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Inverse cascade and intermittency of passive scalar in one-dimensional smooth flow
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Random advection of a Lagrangian tracer scalar fieldu(t,x) by a one-dimensional, spatially smooth and
short-correlated in time velocity field is considered. Scalar fluctuations are maintained by a source concentrated
at the integral scaleL. The statistical properties of both scalar differences and the dissipation field are ana-
lytically determined, exploiting the dynamical formulation of the model. The Gaussian statistics known to be
present at small scales for incompressible velocity fields emerges here at large scales (x@L). These scales are
shown to be excited by an inverse cascade ofu2 and the probability distribution function~PDF! of the
corresponding scalar differences to approach the Gaussian form, as larger and larger scales are considered.
Small-scale (x!L) statistics is shown to be strongly non-Gaussian. A collapse of scaling exponents for scalar
structure functions takes place: Moments of orderp>1 all scale linearly, independently of the orderp. Smooth
scalingxp is found for 21,p,1. Tails of the scalar difference PDF are exponential, while at the center a
cusped shape tends to develop when smaller and smaller ratiosx/L are considered. The same tendency is
present for the scalar gradient PDF with respect to the inverse of the Pe´clet number~the pumping-to-diffusion
scale ratio!. The tails of the latter PDF are, however, much more extended, decaying as a stretched exponential
of exponent 2/3, smaller than unity. This slower decay is physically associated with the strong fluctuations of
the dynamical dissipative scale.@S1063-651X~97!08311-6#

PACS number~s!: 47.10.1g, 47.27.2i, 05.40.1j
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I. INTRODUCTION

Small-scale statistics of a passive scalar advected b
large-scale incompressible velocity field is an old problem
turbulence theory@1,2#. Scalar fluctuations are maintained b
a large-scale forcing, with typical scaleL. According to the
classical picture@3# of direct cascade of the scalar, the i
jected scalar is mainly transferred downscale to the conv
tive interval and then to the dissipative region. For smo
velocities, the statistics of this scalar transfer can be analy
systematically and has been characterized in much deta
@2,4,5#. The core of the one-point scalar probability distrib
tion function ~PDF! is Gaussian with varianceO(ln Pe),
where the Pe´clet number Pe is very large@5#. Far tails of the
PDF decay exponentially@4,5#. The physical key ingredien
at the basis of these results is that material lines are stretc
i.e., the maximum Lyapunov exponentl̄ for particle separa-
tion is positive. Typical trajectories will therefore be exp
nentially stretched and dynamically contracted trajecto
are so rare that they can only affect the extreme tails of
statistics. On the other hand, much interest has been dire
recently at the Kraichnan model@6# for its intermittent scal-
ing behavior@7–9#. The picture emerging there is that d
namically contracted Lagrangian trajectories play a cru
role for structure functions scaling exponentszp and thus for
intermittency. The constant asymptotic behavior ofzp for
large ordersp found in @10# comes, for example, from th
most contracting possible trajectories and the valuez` from
nontrivial fluctuations of the degree of freedom constrain
by incompressibility to still be dynamically stretched.

Previous remarks have led us to investigate scalar tr
port in a smooth compressible flow. The motivation is th
561063-651X/97/56~5!/5483~17!/$10.00
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compressibility might slow down Lagrangian separatio
and thus lead to nontrivial scaling and intermittency prop
ties. These can then be analyzed systematically, using t
niques specific for smooth velocities. Positive Lyapunov e
ponents are indeed characteristic of an isotropic, soleno
flow @11,12#, but this property might be lost when compres
ible flows are considered. It is, for example, known that fo
compressible flow a substantial slowdown of long-tim
transport can take place~see@13#!. Since trapping effects are
amplified when the dimensionality of space is low, we ha
focused our attention on the one-dimensional case. M
specifically, we have considered the smooth limit of the o
dimensionald-correlated-in-time model recently introduce
in @14#. In the absence of pumping and dissipation, any fu
tion of the traceru(t,x) ~say, temperature! is advected along
Lagrangian trajectories and globally conserved on aver
~provided the velocity is temporarily fast or spatial
smooth!. Switching on the energy (u2) supply at the integral
scale, one expects that a steady~or quasisteady, as discusse
in Sec. II! distribution of the scalar is attained. The ma
question raised here is how trapping effects due to compr
ibility affect the redistribution of energy among the scal
and the intermittency properties of the scalar field at the
tionary state. To answer this question, we exploit the
namical formulation of the model to calculate the statisti
properties ofu both upscale and downscale, i.e., at sca
smaller and larger than the integral scaleL. Since the scalar
is a tracer in the velocity field and the velocity is smooth, t
problem reduces to studying Lagrangian separations st
tics.

The major physical difference appearing with respect
the incompressible case is that the maximum Lyapunov
ponent for Lagrangian separations is negative. This me
5483 © 1997 The American Physical Society
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that, along typical trajectories, distances are mostly c
tracted and the stretching process is strongly intermitten
time. As in @15#, the second and higher powers of the d
tanceR(t) between Lagrangian trajectories grow expone
tially, while its low-order positive moments decay expone
tially. This is the dynamical origin of the major results foun
in this paper: inverse cascade and Gaussian statistics at
scales and extreme intermittency at small scales.

Scalar correlations are indeed essentially governed by
statistics of the time spent by particles at distances sma
than L. Consider then two particles initially separated by
distancex@L. Despite the fact thatx@L initially, the dis-
tance R(t) will typically reduce to O(L) for large times
; ln(x/L)/ul̄u. The consequence is that even scales m
larger thanL are strongly excited and this is the dynamic
hint of the inverse energy cascade. Moreover, for mome
of ordern! ln(x/L), relative fluctuations around the previou
typical time are small and this leads to the Gaussian statis
of scalar difference PDF. On the contrary, the statistics
small scalesx!L is associated with the stretching proce
The time to reach the integral scaleL strongly fluctuates and
this is reflected in the intermittency of both scalar differenc
and gradients.

Note that the inverse cascade of the scalar taking p
here differs in one important respect from other known
amples of inverse cascades~say, an energy cascade in tw
dimensional ~2D! Navier-Stokes turbulence@16# and the
number of wave cascades in wave turbulence@17#!: No flux
of another integral of motion~such as enstrophy or wav
energy! is present. The origin of the inverse cascade fou
here is purely dynamical and associated with trapping
fects. An interesting consequence of the inverse cascad
that the equation for the velocity difference PDF, deriv
here exactly from the dynamics, coincides with the one w
out a dissipative anomaly~an operator product expansio
which may result in the anomaly, was proposed in@18# in the
context of the Burgers turbulence; see also@19# for possible
extensions to the passive scalar turbulence!. The absence o
an anomaly is indeed a consequence of the inverse cas
preventing the rare trajectories emerging from the dissipa
range from affecting the convective range behavior.

Strong downscale intermittency emerges all over
quantities calculated in Secs. IV–VI. Moments of scalar d
ferences of ordern>1 all scale linearly withx, indepen-
dently of the order. This collapse of exponents carries ove
the dissipation fielde, which has all its integer moment
scaling with the same power of the Pe´clet number. Smooth
scaling is observed for low-order moments of both sca
differences and dissipation. Very large fluctuations of th
two quantities behave, however, quite differently. The sca
difference PDF has indeed a Lorentzian shape for va
smaller than unity and exponential tails. The tails of the d
sipation field PDF are, on the contrary, stretched expon
tials with exponent 1/3~and not 1/2!. The additional prob-
ability for these strong events comes from fluctuations of
dynamical dissipative scale. A comparison of thenth mo-
ment of the dissipation field with the 2nth moment of the
scalar differences establishes indeed the effective visc
scale. This appears to be a strongly fluctuating quan
growing factorially withn. ~An essential enhancement of th
dissipative scale was observed also in@20#, where the tail of
-
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the scalar PDF was studied for the incompressible case b
instanton technique.! This factorial dependence is the cau
of the 1/3 stretched exponential.

Even though the explicit calculations are quite length
the underlying technical ideas, which make the analyti
calculations doable, are simple to explain. Since the scala
passive, itsnth-order correlation function can be presented
terms of a matrix element of an auxiliary quantum mech
ics. There are then two important steps in the evaluation
such matrix elements~and thus of the scalar PDFs!. First,
smoothness of the velocity field~stretchings and compres
sions are uniform on all the particles! allows us to reduce
~Sec. III and Appendix A! the multiparticle problem to a
one-parameter problem. The fact that the Lyapunov ex
nent is negative clearly emerges in this procedure. T
leads, after the very direct calculations of Secs. IV and V
a compact expression for the PDF of the scalar difference
the convective interval. Here the temporal dynamics of
fluctuating degree of freedom is local, while the locality
lost in the dissipative range. The second step then comes
play. To describe the convection-diffusion interplay in Se
VI and Appendix B, we use a scale separation proced
The temporarily nonlocal~diffusive! and local~convective!
dynamics of the fluctuating degree of freedom are well se
rated by timet0 , 1!t0! ln@Pe#, if the Péclet number Pe is
large. The independence of the resulting average~say, the
gradient’s PDF! over both local and nonlocal domains ont0
and the smallness of the neglected terms with respect to
inverse Pe´clet number justifies the scale separation pro
dure.

The plan of the paper is as follows. In Sec. II the on
dimensional passive scalar model is briefly recalled, its
evant time and length scales are discussed, and the inv
cascade issue is explained from consideration of a sc
pair-correlation function. The dynamical formulation asso
ated with the passive scalar equation is the subject of Sec
and Appendix A. The latter is based on the Martin-Sigg
Rose formalism, while the former is in terms of the partic
formalism. A key point arising in both procedures is th
compressibility couples the dynamics with a global mod
This mode must then be taken into account in order to get
dynamical formulations. Multipoint correlation functions o
scalar gradients are discussed in Sec. IV. The scalar di
ence PDF is described in Sec. V, where behaviors ups
and downscale with respect toL are considered in Secs. V A
and V B, respectively. To describe the advection-diffusi
interplay, we develop a scale separation procedure in S
VI, which is devoted to the PDF of dissipation. We use t
scale separation procedure also in Appendix B to study
question of how the steady regime for the pair-correlat
function of the gradients~discussed in Sec. II! forms. Section
VII is reserved for conclusions and a discussion of questi
that may be of a general relevance for other problems
turbulence and physics of disordered systems.

II. MODEL. THE PAIR-CORRELATION FUNCTION
AND INVERSE CASCADE

Our aim here will be, first, to briefly recall the equation
of the one-dimensional model introduced in@4#, and then,
solving the equation for scalar pair correlation functio
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show the effects of compressibility on the redistribution
energy among the scales and how the inverse cascade o
scalar works.

The advection-diffusion equation governing the evoluti
of the passive scalaru(t,x) is

] tu1u]xu5k]x
2u1 f . ~1!

@Note that there are two types of passive fields for compre
ible flow. Lagrangian tracers, like entropy or temperatu
~provided pressure is slowly varying in space and time!, are
conserved along Lagrangian trajectories in the absenc
diffusion and pumping. The local maxima of the field do n
grow in the absence of pumping. Concentration fields, e
of a pollutant, are, on the contrary, only globally conserv
and their maxima can be amplified. The equations for
two types of fields differ by the position of the space deriv
tive in the velocity term. In our one-dimensional case,
two possibilities correspond to theu andv fields, respective-
ly.# The velocity fieldu and the forcef are both assumed
to be Gaussian andd-correlated in time. The force has th
correlation function

^ f ~ t,x! f ~ t8,x8!&5d~ t2t8!xS x2x8

L D ~2!

spatially concentrated at the integral scaleL. The velocity
has zero average and the correlation function

^u~ t,x!u~ t8,x8!&5@V02S~x2x8!#d~ t2t8!

with S~x!5uxu22g. ~3!

The specific smooth case considered here correspond
g50. The scaling behavior of the structure functionS per-
sists up to the infrared cutoffLu , the largest scale in ou
problem. The scale-independent part of the velocity corre
tion function V0 is estimated by the infrared cutoff of th
velocity field squared;Lu

2 . For scales larger thanLu , ve-
locity correlations decay to zero, i.e., the structure funct
saturates to the constant valueV0 . The equation of motion
for the gradient fieldv5]xu immediately follows from Eq.
~1!:

] tv1]x~uv!5k]x
2v1]xf . ~4!

Thed correlation in time of both the velocity and the forcin
allows us to derive closed equations of motion for equal-ti
correlation functions@2#. It is easy, e.g., using Gaussian i
tegration by parts~see@21#!, to derive the equation for the
second-order correlationsV(t,x)5^v(t,x)v(t,0)& and
F(t,x)5^u(t,x)u(t,0)&,

] tV5]x
2$@S~x!12k#V%2]x

2x, ~5!

] tF5@S~x!12k#]x
2F1x. ~6!

It is convenient to consider first Eq.~5! and then recover the
correlations of the scalar by integration. From the very d
nition of the correlation function, it follows that the solutio
of Eq. ~5! is even inx. Looking for a stationary solution
there is another boundary condition needed to fix the inte
tion constants. This comes from the dynamics. Let us ind
f
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consider the situation when the system starts from
(u[0). At any subsequent time, the solution satisfi
*Vdx50, where the integral is taken over all the spa
Note that such a condition is consistent and actually dicta
by the dynamics: The integral of the correlation function
the gradients is conserved in the evolution on account of
double space derivative on the right-hand side of Eq.~5!. It is
then easy to find the stationary solution of Eq.~5!,

V~x!5
x~x/L !

2k1S~x!
2

C

2k1S~x!
where C5

E x/~2k1S!

E 1/~2k1S!

~7!

@see Appendix B for a dynamical derivation of Eq.~7!#. Ex-
pression~7! is very illuminating for several reasons. Let u
first consider the case where no infrared cutoffLu is present.
The integral*1/(2k1S) is then convergent and, for sma
molecular diffusivity, varies as 1/Ak. For the sake of con-
creteness, let us specifically consider here a forcing tha
regular at the origin. The dominant terms for distances m
smaller than the integral scaleL are then

V~x!5
ux9~0!u

2~2k1S!L2 @aLAk2x2#, ~8!

wherea is constantO(1), dependent on the detailed form o
the pumping. The first and the second term dominate, res
tively, at scales smaller and larger thanL/APe, where the
Péclet number Pe[L/A2k is supposed to be very large
Note that this scale is still much larger than the dissipat
scaleL/Pe. The most interesting aspect of Eq.~8! is that the
dissipationkV~0! vanishes as 1/Pe, i.e., there is no dire
cascade. The energy is actually transferred upscale by
inverse cascade, as also emerges from the behavior of s
correlations.@It is important to mention that, in the absenc
of pumping and dissipation, the average over the velocity
any function of the scalarf (u) is conserved, although th
average over all the space off (u) itself is not conserved in
the particular realizations.# Let us indeed insert into Eq.~6!
the correlation^u(t,x1)u(t,x2)&5*

2`
x1 *

2`
x2 V(y12y2) with

the v-correlation function having expression~7!. It is easily
checked that the energy satisfies] t^u

2&5C, i.e., it grows
linearly with time. Note that the growing mode is constant
space and thus disappears when differences or gradient
considered. The effect of the advective termu]xu is there-
fore to transfer energy upward in scale. Since dissipatio
quadratic in wave number, the energy on large scales ca
practically be dissipated and it is accumulated. This is at
origin of the linear growth in time of̂ u2&. CÞ0 corre-
sponds to the inverse cascade, which therefore holds ge
cally for any scaling exponentg,1 in Eq. ~3! ~if the source
function x is not exceptional!.

Let us now introduce an infrared cutoffLu in the velocity
field. SinceS saturates to a constant, it is clear now that t
integral *1/(2k1S) diverges. The constantC in Eq. ~7!
must then vanish. In the presence of a finite cutoffLu , there
will then be a very long, intermediate-time asymptotic whe
for scales!Lu the behavior without cutoff is observed
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However, after a very long timeTLu
;(Lu /k)2 the dynamics

changes: The inverse cascade stops,^u2& saturates to a finite
value, the system starts dissipating a finite amount of ene
in the limit of large Pe, and the correlation functionV(x)
tends to the solution~7! with C50. The finite contribution
2*x/(2k1S) needed to ensure the zero integral condit
comes from a strip of negative values that becomes more
more extended with time and whose amplitude tends to v
ish. More details on the dynamics of the pair-correlati
function of the scalar gradients at infinite times in the pr
ence of an infrared cutoffLu may be found in Appendix B.

III. DYNAMICS IN PARTICLE
„LAGRANGIAN … FORMALISM

In this section we shall discuss the dynamical formulat
of the equations of motion. The goal is the same as in@5,22#:
to reduce the calculation of simultaneous scalar statistic
averaging of functionals of the random-in-time stra
vorticity matrix. This reduction is crucially based on the fa
that the velocity field is smooth (g50) and can be per
formed for any smooth flow, independently of its compre
ibility and the dimension of space. In the specific 1D case,
matrices are obviously involved and one is left with avera
ing of a single scalar field. Compressibility, however, mak
the derivation slightly more involved and some care must
taken in the ordering of the advective term. This emerges
particular in the nonvanishing average ofs in the weight
~21! for the Lagrangian trajectories~22! and nontrivial Jaco-
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bian of the transformation from the Eulerian frame to the o
comoving with a fluid particle. The dynamical formulation
derived here using particle formalism. The equivalent de
vation using Martin-Siggia-Rose field formalism is reserv
for the Appendix A.

Equation~1! for the passive scalar can be presented in
form

u~T;x!5E
0

T

T expF E
t

T

P̂~ t8;x!dt8Gf~ t;x!dt

5E
0

T

dtE dy C~ t,T;x,y!f~ t;y!, ~9!

where it was supposed that no pumping was supplied
negative times. In Eq. ~9! the operator P(t;x)
[2u(t;x)]x1k]x

2 , the time-ordered exponential is denote
by T exp, and the functionC can be expressed by usin
Lagrangian trajectories as

C~ t,T;y,x!5E
r~ t !5y

r~T!5x
Dr expF2E

t

T

~ ṙ2u!2/4kG .
~10!

This formula expresses the simple fact that Lagrangian
jectories are fixed by the velocityu and smoothed by the
molecular diffusivity k. One can express Eq.~10! in the
more convenient Hamiltonian form
C~ t,T;x,y![E
rN5x

r05y

)
n50

N21

dpn )
n51

N21

drn expFD (
n51

N S 1

D
pn21~rn2rn21!2pn21u~ tn ;rn!1kpn21

2 D G , ~11!

rn5r~ tn5t1nD!, pn5p~ t1nD!, D[
T2t

N21
→0, ~12!
Eq.

d
-

where the momenta integrations (dpk) run along the imagi-
nary axis and regularizations have been specified. Using
property that both velocity and pumping are Gaussian
have correlation functions~3! and~2!, we can easily perform
the averages in the 2nth simultaneous product of the scal
field u(T;x). We thus obtain

F~T;x1 ,...,x2n![^u~T,x1!•••u~T,x2n!&

5E
0

T

dtE )
i 51

2n

dyiR~T2t;xi ,yi !

3@F~ t;y1 ,...,y2n22!x~y2n2y2n21!

1~permutations!, ~13!

where the eddy-diffusivity resolvent is defined as
he
d
R~T;xi ,yi ![)

i 51

2n

^C~T,0;xi ,yi !&

5E
r i ~0!5xi

r i ~T!5yi
Dr i~ t !Dpi~ t !expS E

0

T

dt@pi ṙ i

2 1
2 pi~r i2r j !

2pj1kpi
2# D . ~14!

Here one inverses the direction of time in comparison to
~11! (t→T2t) and thus the convective term (p2r2) is regu-
larized in a way such that itsr-dependent part is retarde
with respect to the p-dependent part. The Hubbard
Stratonovich transformation of the diffusive term gives

R~T;xi ,yi !5E
r i ~0!5xi

r i ~T!5yi
Dr i~ t !Dpi~ t !Dj i~ t !exp@2S2Sj#,

~15!
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S5E
0

T

dt@2pi ṙ i1
1
2 pi~r i2r j !

2pj2pij i #,

Sj5
1

4k E
0

T

j i
2dt. ~16!

In the integration in Eq.~13! of the resolvent, the corre
lation functionF and the pumping correlationx appear. Both
depend on the difference of the coordinates only. This me
that one can simply integrate with respect to collective va
ables, say, r5(r i and the collective momentum
P[( i

2npi /2n. To get rid of the superfluous degrees of fre
dom, let us move from the old set of variable
$r1 ,...,r2n ;p1 ,...,p2n% to the new one
$r,r̃2 ,...,r̃2n ;P,p̃2 ,...,p̃2n%. The new momentap̃i5pi2P
are considered in the system comoving with the ‘‘center
mass’’ and the positionsr̃ i5r i2r1 are with respect to one
e.g.,r1 , taken as reference. The actionS can then be decom
posed asS5Scol1S̃, where

Scol[E
0

T

dtF2P2S (
i .1

r̃ i D 2

12nP2S (
i .1

r̃ i
2D

12nPS (
i .1

p̃i r̃ i
2D 22PS (

i .1
p̃i r̃ i D S (

j .1
r̃ j D 2Pṙ

2P(
i 51

j i G , ~17!

S̃[E
0

T

dtF2S (
i .1

p̃i r̃ i D 2

2(
i .1

p̃ir8 i2(
i .1

p̃i~j i2j1!G .
~18!

Let us now consider the integra
*P i 51

2n dyiR(T;xi ,yi) f (yi), where, as in Eq.~13!, f is a
function of differences onlyf (yi)5 f (yi2y). Collective de-
grees of freedomr andP are easily integrated. The principa
point for this integration is the absence of a ‘‘potential’’r
dependence on the actionS. The integral is then reduced t
*P i .1

2n dỹiR(T; x̃i ,ỹi) f ( ỹi1y1), where the effective resol
vent

R̃~T; x̃i ,ỹi !5E
r̃ i ~0!5 x̃i

r̃ i ~T!5 ỹ iDr̃~ t !Dj i~ t !Ds̃~ t !exp@2Ss2Sj#

3)
m,i

dS r i
~m!2r i

~m21!

D
2s̃~m!r i

~m21!

2j i
~m!1j1

~m!D ~19!

and the measure of averagingSs5(m@s̃ (m)#2/4. In order to
derive Eq.~19!, we have decomposed the quadratic overp̃r̃
term by means of Hubbard-Stratonovich trick, introducing
additional collective integration overs̃. The integration with
respect to momentump̃i is already performed in the last lin
of Eq. ~19! ~the effective action appears to be linear inp̃ in
the result of the Hubbard-Stratonovich transformation!. The
ns
i-

-

f

n

continuous versions of the equation under thed-function sign
in Eq. ~19! and the measure of averaging overs̃ are

r8 i5sr̃ i1j i2j1 , s[s̃21, ~20!

Ss5
1

4 E
0

T

dt@s11#2. ~21!

@By continuous version we mean, in particular, a symme
cal smearing of the temporald function in thes-field corre-
lation for a small but finite~which is still much larger than
the temporal sliceD! width.# To see the relation between Eq
~19! and Eqs.~20! and ~21! one can check in particular tha
both discrete and continuous versions give^r i(t)&5r i(0).
The negativity of the Lyapunov exponen
l̄[ limt→`$ ln@W(t)/t#% follows from Eq.~21!. The formal so-
lution of Eq. ~20! is

r̃ i~ t !5W~ t !~xi2x1!1W~ t !E
0

t

dt8W21~ t8!~j i2j1!,

W~ t ![expF E
0

t

dt8s~ t8!G . ~22!

It is finally easy to recalculate the 2n-particle correlation
function of the scalar from the 2n-particle resolvent

F~T;x1 ,...,x2n!

5^J@T;$s~ t !%;x12x2#•••J@T;$s~ t !%;x2n212x2n#

1~permutations!&s , ~23!

J@T;$s~ t !%;xi2xj #[E
0

T

dtK xFW~ t !
xi2xj

L

1W~ t !E
0

t

dt8W21~ t8!
j i2j j

L G L
j i , j

,

~24!

where averages overs(t) and j i(t) are fixed by the mea-
sures exp@2Ss# and exp@2Sj# defined in Eqs.~21! and~16!,
respectively.

IV. CORRELATION FUNCTIONS OF SCALAR
GRADIENTS IN THE CONVECTIVE INTERVAL

Using the results of the preceding section, the dynam
expression of correlation functions of the scalar gradi
v(t,x)5]xu(t,x) can be simply found differentiating Eq
~23! with respect to all spatial arguments. Here we shall
interested in the behavior of these simultaneous correla
functions for distances such that molecular diffusivity can
neglected. We first derive a general formula valid for
arbitrary form of forcing correlation and then treat more sp
cifically the case of an exponential pumping. The result
expression shows that the ratio between the irreducible
the reducible contributions to the 2nth correlation function
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grows as (L/x)n21. This evidences both the non-Gaussi
nature of the field and the fact that it increases going do
scale in the convective interval. The same phenomenon t
place for generic forms of the pumping. The discussion
Th

.
-
v

s,
-
es
f

the range of scales where these considerations hold is p
poned to the end of the section.

It follows from Eq. ~23! that scalar gradients correlatio
functions are given by
^v~T,x1!•••v~T,x2n!&5
~21!n

L2n K F E
0

T

dt W2~ t !x9S W~ t !
x12x2

L D G •••F E
0

T

dt W2~ t !x9S W~ t !
x2n2x2n21

L D G L
1~permutations!, ~25!
at
g

ry

f
t

where molecular diffusion effects have been neglected.
only averaging left in Eq.~25! is then with respect to thes
statistics defined by Eq.~21!. A possible way of performing
this average is to introduce the auxiliary object

A~s1,2,...,s2n,2n21!

5K expH E
0

T

W2~ t !S s1,2x9FW~ t !
x12x2

L G
1•••1s2n,2n21x9FW~ t !

x2n2x2n21

L G DdtJ . ~26!

Differentiating Eq.~26! over s variables, Eq.~25! is clearly
reproduced up to the sign and theL-dependent prefactor
Inserting the weight~21! into Eq.~26!, one can easily recog
nize the path-integral structure associated with the time e
lution of the quantum-mechanical Schro¨dinger equation,
having HamiltonianĤ52]h

22U(exph)exp(2h). The po-
tential U appearing in the Hamiltonian is

U~y![s1,2x9Fy
x12x2

L G1•••1s2n,2n21x9Fy
x2n2x2n21

L G
~27!

and the space variableh is defined ash5*0
t dt8s(t8). Using

standard notation for quantum-mechanics matrix element
is easy to check that Eq.~26! can be presented as
e

o-

it

A5exp@2T/4#^d~h!ue2TĤue2h/2&5@e2T/4P~T;h!#h50 ,
~28!

where the wave functionP(T;h) satisfies (]T2Ĥ)P50
and the initial condition isP(0;h)5e2h/2. We can now
remark that the potential part of the Hamiltonian vanishes
h→2`, while the initial condition does not. The resultin
asymptotic behavior at large timesT will then be

P~T;h5 ln@y# ! ——→
T→`

eT/4
P0

Ay
, @]y

21U~y!#P0~y!50.

~29!

A new variabley5exph has been introduced. The bounda
conditions for the spatial partP0 are easily derived from
those forP: P0 should tend to unity fory→0 and the ratio
P0 /Ay should vanish fory tending to infinity. It follows
from Eq. ~26! that the auxiliary objectA is simply the func-
tion P0 calculated aty51.

Derivatives ofA at s50 are needed for the calculation o
gradients correlations~25!. It is then convenient to presen
the solution of Eq.~29! in the form of an expansion with
respect to the potentialU:
n

A~s1,2,...,s2n,2n21!5 (
k50

` E
0

1

dy1E
y1

`

dy2U@y2#E
0

y2
dy3E

y3

`

dy4U@y4#•••E
0

y2k22
dy2k21E

y2k21

`

dy2kU@y2k#. ~30!

Only the nth-order term of the expansion in Eq.~30! actually contributes to the 2nth-order scalar gradients correlatio
function. Its final expression reads

^v1•••v2n&5
~21!n

L2n ( E
0

1

dy1E
y1

`

dy2x9Fy2

xk1
2xk2

L
G E

0

y2
dy3E

y3

`

dy4x9Fy4

xk3
2xk4

L
G •••E

0

y2n22
dy2n21

3E
y2n21

`

dy2nx9Fy2n

xk2n
2xk2n21

L
G , ~31!
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where summation is performed over all the splittings of
set$k1 ,...,k2n% into n ordered pairs.

Formula~31! holds for any pumpingx. Let us now spe-
cifically consider the case of the exponential pump
xe(z)5exp@2uzu#, where the integrals appearing in Eq.~31!
can be easily performed. For the second-order correlat
we obtain that the dominant contribution for small distanc
x12/L is 21/x12L, in agreement with the solution~7!. For
the fourth-order correlation function, we find

^v~x1 ,t !v~x2 ,t !v~x3 ,t !v~x4 ,t !&e

5Fe~x12,x34!1Fe~x13,x24!1Fe~x14,x23!,

Fe~x,y!.
2

xy~x1y!L
, ~32!

wherexi j [uxi2xj u, the subscripte is intended to remind the
reader that this specific expression holds for the expone
pumping, and only dominant terms inxi j /L have been re-
tained. Distinguishing between reducible~Gaussian! and ir-
reducible contributions into Eq.~32!, one observes that th
irreducible part isL/x@1 times larger. More generally, ifx
denotes the typical distance between the various partic
i.e.,xi j ;x, then^v1•••v2n&;1/(x2n21L). Both the correla-
tion functions and the degree of non-Gaussian nature of
scalar gradient~ratio of the 2nth moment to its reducible
part! are then growing withxi j going downscale.

Let us finally arrive at the range of validity of the prev
ous convective arguments. The exponential form of
pumping is a special one since it is not regular at the orig
The first term of its expansion at small distances is linear
not quadratic. This affects the dependence onx of the
second-order correlation. For a regular pumping, the do
nant term would indeed be constant, as follows from Eq.~8!.
On the contrary, one can check using Eq.~31! that the de-
pendence of correlations of order greater than or equal
on x andL remains the same as for the exponential pumpi
The regularity at the origin of the pumping also enters
e

n,
s

ial

s,

e

e
.
d

i-

4
.

e

range of scales where neglecting molecular diffusivity
fects is allowed. Performing the small distance expansion
in Eq. ~8! for a regular pumping, a logarithmic correctio
proportional to ln Pe appears. The ultraviolet criterion of a
plicability of the previous convective considerations for t
exponential pumping is thenx@Ak ln@Pe#. For a pumping
regular at the origin, the criterion is the same as in Eq.~8!,
i.e., x@L/APe.

V. SCALING AND THE PDF OF SCALAR DIFFERENCES

Scalar structure functionsS2n(x)5^@u(T,x)2u(T,0)#2n&
can be easily expressed in terms of scalar correlation fu
tions F by taking the appropriate combinations of them.
dynamical expression forS2n can thus be derived directly
from Eq. ~24!, obtained in Sec. III for theF ’s. This is not,
however, a very practical procedure. Each of the contri
tions appearing in the sum giving the structure functions c
tains indeed the constant mode. As it was discussed in Se
and as it also appears from the dynamical expression~23!,
this mode grows linearly with the observation timeT. It is
just in the whole sum that these divergent contributions
canceled, thus leaving the time-independent final result
structure functions. It is then more convenient to rest
structure functions directly from scalar gradients correlatio
asS2n(x)5*0

xdx1•••*0
xdx2n^v1•••v2n&. An important ques-

tion is whether or not we can avoid taking dissipation expl
itly into account in the calculation ofS2n in the convective
interval. This means essentially asking whether it is enou
to know just the convective expressions for gradients co
lations or whether their whole behavior is needed. This po
can be tested by simply taking the convective expressions
^v1•••v2n& found in Sec. IV and inserting them into th
integral expression forS2n . One can then check that all th
integrals for any structure function are convergent on
ultraviolet and dominated by the infrared side of the conv
tive range.

The expression for structure functions in the convect
interval is then
S2n~x!5~2n21!!! n!2nE
0

x/L

dy1E
y1

`

dy2

x@0#2x@y2#

y2
2 E

0

y2
dy3E

y3

`

dy4

x@0#2x@y4#

y4
2 •••E

0

y2n22
dy2n21

3E
y2n21

`

dy2n

x@0#2x@y2n#

y2n
2 , ~33!
q.

t
or-

ng
ere

the
ted
x-
s

where we have already performed the 2n integrals over the
dxi ’s. The whole set of equations~33! can be recast into the
more compact equation

H x2]x
22l2Fx~0!2xS x

L D G JZS x

L
,l D50, ~34!

for the generating functionZ(x,l)5^exp(2ildux)& of scalar
differencesdux taken at the scalex. From this very defini-
tion it follows that the functionZ must tend to unity for
vanishingx and, for the convergence of the integrals in E
~33!, it should grow slower than linearly at infinity.

It is worth recalling that Eq.~34! was found as the resul
of an accurate dynamical procedure: We first calculated c
relation functions of the scalar gradient for all points bei
separated, the resulting gradients correlation functions w
then integrated to obtain structure functions, and finally
generating function for scalar differences was reconstruc
from its moments. We thus avoided handling diffusion e
plicitly, paying for this the price of taking many particle
into consideration. The closed differential equation~34! for
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the scalar difference generating function emerges as the
sult of this procedure. On the other hand, one could gener
@also for the nonsmooth case, i.e.,gÞ0 in Eq.~3!# derive the
following unclosed Fokker-Planck equation for the gener
ing function:

$x22g]x
22l2@x~0!2x~x/L !#%Z~x/L,l!

5k^@]1
2u12]2

2u2#exp@l~u12u2!#&. ~35!

This equation is simply obtained by averaging the equa
of motion ~1! for the scalar at two reference points. Th
smooth (g50) limit of Eq. ~35! differs from Eq.~34! by the
right-hand-side dissipative term. There is a general expe
tion that this term may remain finite even in the limitk→0,
thus providing a nonvanishing anomaly in the terminology
Polyakov@18#. Equation~34!, derived microscopically with-
out any conjecture, shows then the absence of an anom
for the one-dimensional smooth flow.~We acknowledge
Polyakov for directing our attention to this matter!. Physi-
or
e

F
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cally, the absence of an anomaly is associated with the v
ishing direct flux ofu2 in the limit of infinite Péclet numbers.
This point, already appearing in Sec. II, will emerge ev
more clearly in the full analysis of the dissipation field
Sec. VI. In Secs. V A and V B solutions of Eq.~35! at x@L
andx!L will be discussed.

A. Upscale interval

Let us first consider scales larger than the integral scaleL.
The asymptotic solution for the generating function, whi
can also be found from Eq.~35! by replacingx(0)2x(x/L)
by x~0!, is

Z5S x

L D 1/22A114x[0]l2/2

. ~36!

The inverse Fourier transform of Eq.~36!, calculated in the
saddle-point manner~the large parameter isx/L or, equiva-
lently, large values ofuduxu!, gives
Pdux~y!5
1

2Apx@0# ln@x/L#
3H exp$2y2/~4x@0# ln@x/L# !%, uyu! ln@x/L#

exp$2uyu/~2Ax@0# !%, uyu@ ln@x/L#.
~37!
an
of

rms

that

r

m

Thus the arguments for Gaussian statistics presented in@5#
for the incompressible case indeed can be reversed and
plied here for the upper interval. Structure functions of
ders much less than ln@x/L# indeed scale logarithmically, th
core of the scalar difference PDF is Gaussian, and the PD
tail is exponential.

B. Downscale interval

We shall now obtain a general formula for the PDF
y!1, no matter howy andx/L relate to each other, provide
both of them are small. Indeed, replacing thex-dependent
potential by the first term of the expansion overx/L and
solving the resulting differential equation with the sam
boundary conditions as before one gets the simple expo
tial form for the generating function Z(x/L,l)
5exp(2lAx9@0#/2x/L). The inverse Fourier transform pro
duces the following Lorentzian expression for the PDF:

P~dux!~y!5
1

p

L

x

1

y21ux9@0#ux2/~2L2!
, ~38!

which is thus generally valid atuyu!1. It results from Eq.
~38! that the PDF is smooth in a small region around
origin y50, where it can actually be expanded iny2L2/x2.
This region extends approximately up tox/L, where the sec-
ond behavior in 1/y2 sets in. Note that the concavity of th
PDF in this second region is upward and remain upward
to the small valuesx/L. It is just for very small values
uyu!x/L that the concavity is reversed downward. An e
perimental histogram of such a PDF would then lo
strongly cusped at the origin.
ap-
-

’s

t

n-

e

p

-

The tail of the PDF matching the Lorentzian~38! at
uyu;1 is exponential. To see this and generally to obtain
explicit analytic solution for the PDF in the whole domain
x anddux , let us consider the specific form of pumping

x* S x

L D5
1

11~x/L !2 . ~39!

Making in Eq. ~34! the change of variable cot@w#5x/L, the
solution of the resulting equation can be expressed in te
of associated Legendre functions as

Z* ~cot@w#;l!

5
2n21/2~n11!G2@~n11!/2#P1/2

2n21/2~cos@w#!

Ap sin@w#
,

~40!

where the upper indexn521/21(1/2)A114l2. The
choice of the sign for the square root is such as to ensure
the generating functionZ(x,l) grows at infinity slower than
linearly. The notationZ* in Eq. ~40! is intended to stress
that this explicit solution was obtained for the pumping~39!.
Note that Eq.~40! is particularly applicable for the uppe
interval discussed in Sec. V A. Considering Eq.~40! at w!1
and l@1, one indeed recovers Eq.~36!. Using the integral
representation~8.714! in @23# and the doubling formula for
theG function, Eq.~40! can be presented in the integral for
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Z* ~cot@w#;l!5
2G@~n13!/2#

Ap sin@w#G@~n12!/2#

3E
0

w

cos@ t#S cos@ t#2cos@w#

sin@w# D n

dt.

~41!

The integral representation~41! is useful since it clearly
shows the analytic structure ofZ* with respect tol. One
observes in particular thatZ* is analytic in the whole uppe
semiplane, except on the line of imaginaryl from i /2 to i`.
The path on the real axis in the inverse Fourier transform
be then deformed into the following one surrounding the c
.

ur

de

s

n
t:

The left branch goes fromi`201 to i /2201, bypasses
l5 i /2 from below, and the right branch goes fromi /2101

to i`101. The final result is

P
*
~dux!

~y!5
1

4p E
0

` q dq

A11q2
expF2

uyu
2

A~11q2!G
3G~cot@w#;q!, ~42!

where the function2 iG is the difference betweenZ* on the
right and the left of the cut, i.e.,n→21/26 iq/2, respec-
tively. The general expression forG can be derived from the
integral representation~41! as
of the

q.
G~cot@w#;q!5
4

Ap sin@w#
E

0

w cos@ t#dt

Acos@ t#2cos@w#
ReF i

GS 51 iq

4 D
GS 31 iq

4 D S sin@w#

cos@ t#2cos@w# D
2 iq/2G . ~43!

The calculation of the PDF of scalar differences in the convective interval is now reduced to the evaluation
asymptotic behavior ofG in Eq. ~43! and then to perform the integral~42!. In the convective interval,x/L5cot@w#!1, i.e., the
anglew is very close top/2. The dominant expression ofG in this region can be obtained by simply expanding directly in E
~43!. Inserting this expansion into Eq.~42!, we obtain

P
*
~dux!

~y!5
p

8

x

L E
0

`
qA11q2 sinh@pq/2#expF2

uyu
2

A11q2Gdq

uG@~31 iq !/4#u4 cosh2@pq/2#
→H 1

p

x

L

1

y2 , 1@uyu@x/L

;
x

L
exp@2uyu/2#, uyu@1,

~44!

where, aty@1, the prefactor algebraic iny has not been considered. Varying the pumping functionx(x/L), one can change
the number behinduyu in the exponential, but the exponential behavior itself will never change.

One may check that the PDF’s asymptotic for the smallest valuesuyu!x/L derived from Eqs.~40! and ~41! is consistent
with the general formula~38!. Indeed, the respective large-q asymptote ofG is

G~cot@w#;q!;2A q

p sin@w#
E

0

w cos@ t#

Acos@ t#2cos@w#
sinS q

2
lnF sin@w#

cos@ t#2cos@w#G2
p

4 D . ~45!

Substituting Eq.~45! into Eq. ~42! and performing first the integral inq and then the one int, we obtain atuyu!x/L!1

P
*
~dux!

~y!;
1

&p
E

0

w cos@ t#dt

Acos@ t#2cos@w#
ln23/2F 1

cos@ t#2cos@w#G S 12
15

8

y2

ln2F 1

cos@ t#2cos@w#G D→
1

p

L

x S 12
L2y2

x2 D . ~46!
is
Expressions~44! and ~46! are clearly in agreement with Eq
~38!, valid for an arbitrary form of pumping.

Let us now derive the scaling behavior of scalar struct
functions^uu12u2ua& at x!L. The scaling for ordersa.1
is dominated by the behavior of the PDF at values of or
unity. On the contrary, fora,1, the region in 1/y2 domi-
nates. The resulting scaling behavior of structure function
e

r

is

^uu12u2ua&;H x

L
for a>1

S x

L D a

for 21,a<1.

~47!

For a,21 the moments do not exist at all since the PDF
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finite at the origin. We remark that Eq.~47! is exactly the
same scaling as for velocity structure functions in the B
gers equation. In the present model the collapse of h
order exponents is associated with the uniformity in spac
stretchings and compressions.

VI. PDF OF SCALAR DISSIPATION AND GRADIENTS

The nth-order moment of the dissipation fiel
e5k„]xu(t;x)…2 can be obtained from the dynamical expre
sion ~24! as

^en&5~2n21!!! kn^„]xi
]xj

J@T;$s~ t !%;xi2xj #…xi5xj

n &

[~2n21!!! ^Q@T;$s~ t !%#n&s . ~48!

The average with respect to the noisesj j is easily performed
in Fourier space, thus obtaining

Q[
1

Pe2 E
0

T

dt W2~ t !GFW2~ t !

Pe2 E
0

t

dt8W22~ t8!G ,
G~x2![

1

4p E
2`

`

dq q2xq exp~2q2x2!, ~49!

where W(t) is defined in Eq.~24! and xq is the Fourier
transform of the pumping correlation functionx(x). Let us
recall that the Pe´clet number is defined as the pumping-t
diffusive scale ratio Pe[L/A2k and is supposed to be larg
To obtain the stationary valuêen&, the limit T→` should
be considered.

The average overs with the Gaussian weight~21! has to
be calculated in Eq.~48!. This is very hard to do explicitly in
the general case. We can, however, exploit the presenc
the large parameter Pe to develop an asymptotic theory
captures the dominant terms in Eq.~48! with respect to Pe.
The important point is that, when Pe is large, there are
very different time scales in the dynamics. For the Lagra
ian trajectories relevant to Eq.~48!, particles start very close
to each other. The additive molecular noise term in
Langevin equation for Lagrangian trajectories is dominan
these distances and remains dominant as long as the par
do not separate by a distance comparable to the dissip
scale. This phase of the dynamics corresponds to the for
tion of the integral in the square brackets in Eq.~49! and
takes place on times of order unity~not scaling with Pe!.
Once the particles have reached the dissipative scale
enter into the convective region, random multiplicative
fects due to the velocity become dominant. Due to the m
tiplicative nature of the dynamics, the time to go from t
dissipative scale to the integral scale varies as ln Pe. T
phase is associated with the growth of theW2 terms in Eq.
~49!. For large Pe´clet numbers, the two processes, formati
of the integral in the square brackets and growth ofW2 terms
in Eq. ~49!, are well separated in time. Let us then conside
time t0 satisfying 1!t0! ln@ Pe#. At the dominant order in
the number Pe´clet, Q can be approximated as
-
h-
of

-

of
at

o
-

e
t
les

ive
a-

nd
-
l-

is

a

Q@T;$s~ t !%#'
b

Pe2 E
t0

T

dt expF2E
t0

t

s.~ t8!dt8G

3GF a

expF2E
t0

t

s.~ t8!dt8G
Pe2

G , ~50!

wherea andb are defined as

a[expF2E
0

t0
s~s!dsG E

0

t0
dt8 expF22E

0

t8
s~ t9!dt9G ,

b[expF2E
0

t0
s~ t8!dt8G . ~51!

In order to obtain Eq.~50! from the original expression~49!,
we have made the following two steps:Q@ t0 ;$s(t)%# has
been neglected and the upper boundt in the integral overdt8
for a has been replaced byt0 . Both steps are motivated b
the time scales separation at large Pe´clet numbers. More pre-
cise conditions of validity of the approximation will be dis
cussed later in the section. The moments^Qn& can now be
obtained by taking thenth power of Eq.~50! and averaging.
The average overs(t) is decomposed in a small times pa
Ds,[P t,t0

ds(t) and a large times partDs.

[P t.t0
ds(t). The corresponding weights are simply o

tained decomposing the integral overt in Eq. ~21! as
S,5(1/4)*0

t0@s,11#2 and inS. the integration runs from
t0 to T. The great advantage of Eq.~50! is that, in the long-
time averaging, botha and b are just external parameter
depending neither on timet nor on s. . Once the average
over s. is performed, we are then left with a function ofa
and b. This is in turn averaged overs, , giving the final
result ^Qn&.

A compact way for averaging over long-time statistics
to introduce the Laplace transform of the PD
Ps

.[^exp@2sQ#&. . It is indeed easy to recognize that i
path integral coincides with a matrix element in quantu
mechanics with Hamiltonian Ĥ52]h

2

1sb exp(2h)G@a exp(2h)/Pe2#/Pe2. The space variable
h5* t0

t s(t8)dt8. Using standard quantum-mechanical no

tion, the expression forPs
. can be presented as

Ps
.[^exp@2sQ#&.

5exp@2~T2t0!/4#^d~h!ue2~T2t0!Ĥ0ue2h/2&

5@e2~T2t0!/4F~T2t0 ;h!#h50 , ~52!

whereF(t;h) satisfies (] t2Ĥ)F50. The initial condition
at t50 for the wave functionF(t;h) is exp(2h/2). Noting
that the potential part of the Hamiltonian vanishes
h→2` and F(0;h) does not, we obtain the asymptot
behavior ofF at long times

F~ t,h5 ln@yPe# ! ——→
t→`

et/4
F0~y!

APey
,

@]y
22sbG~ay2!#F0~y!50. ~53!
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The new variabley5exp(h)/Pe has been introduced. Th
function F0(y) should tend to unity fory→0 andF0 /Ay
should vanish fory→`. It follows from Eq.~52! thatPs

. is
simply the functionF0 calculated aty51/Pe.

The general way to attack Eq.~53! for an arbitrary form
of pumping is to proceed as we have already done for
~30! in Sec. IV. Starting with a constant unit solution, th
term withs in Eq. ~53! is treated perturbatively. A series ins
is then obtainedPs

.511(n51
` cn(y)sn, with thecn’s having
in
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an expression similar to Eq.~31!. The nth momenten aver-
aged overs. coincides withcn(1/Pe) up to simple combi-
natorial factors. The final result is

^en&.5~2n21!!! n! S b

a D n21/2anAb

Pe
, ~54!

where the coefficientsan are given by
an5E
0

`

dy2G@y2
2#E

0

y2
dy3E

y3

`

dy4G@y4
2#•••E

0

y2n22
dy2n21E

y2n21

`

dy2nG@y2n
2 #. ~55!
ce

l ma-

s

r

ap-
Equation~54!, together with Eq.~61! allowing the calcula-
tion of small times averages, gives the expression of all
teger moments of the dissipation field for a general form
pumping. It follows from Eq.~54! that all these moment
scale with the same power of Pe. This shows that the str
intermittence evidenced in the analysis of scalar differen
in the convective range comes down into the dissipa
range. The analysis of then dependence of the constants
Eq. ~54! actually shows that the intermittence of the dissip
tion field is even stronger than for scalar differences. To t
aim, it is convenient to restrict the analysis to a particu
form of pumping, allowing us to proceed with explicit ca
culations. Specifically, let us considerG* @x2#5exp@22x#.
The correlation function of the corresponding pumping h
the Fourier transformxq* 54Ap/q4 exp(21/q2). Equation
~53! with G having the specific formG* is solved in terms
of the Bessel functionI 0 as

Ps
.5

I 0~Asb/ae2Aa/Pe!

I 0~Asb/a!
——→

Pe@1
12

Asb

Pe

I 1~Asb/a!

I 0~Asb/a!
.

~56!

The advantage with respect to the general case with arbit
form of pumping is clearly thatPs

. is now known explicitly
and this will permit us to reconstruct the PDF of the dissip
tion field.

Having averaged overs. , we need now to take into
account fluctuations at small times, i.e., average overs, .
An important point is that, both in the general case~54! and
in Eq. ~56!, we need to average quantities of the for
Ab f (a/b), with f arbitrary but having the property that
depends only ona/b. For our purposes, it is then appropr
ate to introduce the random variablem5a/b and consider
its distribution function weighted withAb:

P,@m#[

E Ds,exp~2S,!dS m2
a

b
~$s,%! DAb~$s,%!

E Ds,exp~2S,!

.

~57!
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It is again convenient for averaging to introduce the Lapla
transform of the PDFPs

,5^exp(2sm)&, . As in Eq.~52!, its
expression can be presented as the quantum-mechanica
trix element

Ps
,5E

0

`

e2smP,@m#dm5e2t0/4^d~h!uexp@2t0Ĥ#ueh/2&

5@e2t0/4C~ t0 ;h!#h50 . ~58!

Here C(t;h) satisfies (] t2Ĥ)C50, the Hamiltonian is
Ĥ(h;s)52]h

21s exp(22h), the space variableh5*0
t s,

and the initial condition for the wave functionC(t;h) is
exp(h/2). The asymptotic behavior at large timest can be
obtained as in Eq.~53!, noting that the potential part inĤ
decreases at infinity andC(0;h) does not. It follows that

C~ t;h! ——→
t→`

et/4C0~h!5et/4 exp@h/22As exp~2h!#,

~59!

where C0(h) satisfies (Ĥ11/4)C050 and behaves a
exp(h/2) for largeh’s. Requiring exp(t0/4)@1, we can plug
the asymptotic expression~59! into Eq. ~58! and obtain
Ps

,5exp@2As#. The PDF ofm and the moments relevant fo
en are easily restored as

P,~m!5
1

2p i E012 i`

011 i`
dsPs

,esm5
1

2p i E012 i`

011 i`
dse2Asesm

5
1

2Apm3/2
expF2

1

4m G , ~60!

K S b

a D n21/2

Ab L
,

5E
0

`

dm m2n11/2P,~m!

522n21
~n21!!

Ap
. ~61!

This expression can be used to calculate the moments
pearing in Eq.~54!. Note that expression~54!, derived ex-
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ploiting the time scale separation, coincides for the first m
ment ^e& with the dominant order of the known solutio
derived in Sec. II:

^e&5
1

pPeE0

` @x~0!2x~x!#dx

x21Pe22 . ~62!

One step further can be made for the specific form
pumpingG* @x2#5exp@22x#, allowing us to obtain the ex
plicit solution ~56!. From Eq. ~56! we obtain indeed the
Laplace transform of the PDF forQ ~averaged over boths,

ands.! as

Ps[^Ps
.&,→12

As

Pe E0

`

dm P,~m!
I 1~As/m!

I 0~As/m!

512
1

ApPe
E

0

`

ln@ I 0~2Axs!#e2xdx. ~63!

The momentŝ en& can be immediately reconstructed, a
cording to Eq.~48!, from the derivatives of Eq.~63! at s50.
They read

^en&5
~2n21!!! n!

ApPe

]n

]zn lnF 1

J0~Az!
GU

z50

5 i
G~n11/2!@G~n11!#22n

2p2Pe E
C

ln@J0~Az!#dz

zn11 ,

~64!

where C is a close contour aboutz50 in the complexz
plane. The Cauchy integral representation~64! is useful for
getting the large-n asymptote of Eq.~64!. The integral is
indeed saddled around the square of the first zero of
Bessel functionz05x0

2, J0(x0)50. The saddle estimation fo
the integral is of the order ofx0

n , thus giving

ln@Pê en&# ——→
n→`

n~3 ln@n#231 ln@2x0# !. ~65!

The whole expression~63! can actually be inverted. From
Eq. ~48! it follows indeed that the PDFP(e)(e) of the dissi-
patione is given by

P~e!~e!5
1

2Ap

1

2p i E0

`

dx
e2x

x3/2 E
012 i`

011 i`
ds Ps exp@se/~2x!#

5
1

PeE0

`

dz lnF 1

I 0~z!GF 1

&p

0F2~1/2,1/2;ez2/8!

Ae

2
z

Ap
0F2~1,3/2;ez2/8!G , ~66!

where qFp is the generalized hypergeometric function w
the q parameters in the numerator and thep parameters in
the denominator. Thed function at the origin arising from
the unit term in Eq.~56! has not been considered in Eq.~66!.
The reason is that, as we shall see in a moment, the rang
validity of Eq. ~66! is e@Pe22.
-

f

e

of

It is indeed time to clarify the limits of validity of the
calculations performed. To be concrete, we shall specific
consider the pumpingG* leading to Eq.~56!. The remainder
of the expansion over Pe21 in Eq. ~56! is bounded by
b@ I 1(Asb/a)Asa/b1sI18(Asb/a)#/2Pe2. Contrary to Eq.
~61!, we now need to consider averages ofm5a/b with
weight b. The problem can again be reduced to the calcu
tion of a quantum-mechanical matrix element and it is fou
that the final result depends ont0 as exp(2t0). The condition
for the remainder to be subdominant with respect to
terms kept in Eq.~56! is therefore that exp(2t0)/Pe should
vanish as Pe→`. On the other hand, the observation tim
must be much larger than unity in order to attain the stati
ary state, i.e.,t0@1. This condition is clearly compatible
with the previous one, in the limit of large Pe´clet numbers,
and gives the ordering 1!t0! ln@Pe#. The other delicate
point is the criterion of applicability of Eq.~63! with respect
to s. For the expansion in Eq.~56! to be meaningful, the
second term should be much smaller than unity. This sho
that we should requires!Pe2. The expansion~56! fails then
to describe the larges tails ofPs and thus the smallest value
of e in the respective PDF~the relation between larges and
smalle is direct since the decay of the generating function
relatively slow!.

Another simple approximation is, however, available f
the high-s limit. The trajectories contributing tôexp(2sQ)&
at larges@Pe2 are clearly those whereQ is small. From the
definition ~49! it follows that, for this to happen,W2(t)
should remain small all the time. The quantityW2* tW22 is
in this caseO(1) and the argument inG is small on account
of the 1/Pe2 factor. For the trajectories relevant at highs, it is
thus possible to approximateQ by G@0#/Pe2*W2. The
Laplace transformPs reduces then to

Ps[K expF2
sG@0#

Pe2 E
0

T

dtW2~ t !G L
5e2T/4^d~h!uexp$2TĤ~2h;sG@0#/Pe2!%ue2h/2&,

~67!

whereh(t)[*0
t s(t) andĤ is the same as for Eq.~58!. The

matrix element~67! actually coincides identically with Eq
~58! when t0 is replaced byT, h by 2h, and s by
sG@0#/Pe2. Using Eq.~60!, one can then easily get the fina
answer

Ps→expF2
AsG@0#

Pe G , s@Pe2. ~68!

Inverting Eq.~68!, we can obtain the PDF ofe at the small
valuese!Pe22. ~Falkovich has informed us that the expre
sion for the PDF’s origin can be derived through the ad
batic conjecture suggested recently@24#.! For larger values
of e, the PDF follows from the general formula~66!. The
following general behavior for the dissipation field PDF
thus obtained:
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P~e!~e!→5
&Pe

pAG@0#

1

Ae
S 12

2Pe2

G@0#
e D for e!Pe22

G@0#

&p

1

Pe

1

e3/2 for Pe22!e!1

G@0#
exp@2~e/e0!1/3#

Pe
, e0;1 for e@1,

~69!

where algebraic prefactors have not been considered in region of exponential falloff. The PDF for scalar gradientsv5Ae/k
follows immediately from Eq.~69! as

Pv~v!→5
L

p S 12
L2

G@0#
v2D for v!1/L

G@0#

pL

1

v2 for 1/L!v!1/Ak

G@0#
k

Pe
exp@2~ uvuAk/e0!2/3# for v@1/Ak.

~70!
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Moments of the dissipation̂ea&, with a.1/2, are all pro-
portional to 1/Pe, in agreement with Eq.~54! valid for arbi-
trary pumping. Moreover, we learn from Eq.~69! that the
linear scaling found for scalar differences low-order m
ments comes down to the dissipative range. Moments^ea&
with 21/2,a<1/2 scale indeed as Pe22a. Moments with
a,21/2 do not exist. From Eq.~70! it also follows that the
same tendency observed for scalar differences PDF to
velop a cusped structure at the origin is present. An imp
tant difference arises for the tails. The comparison betw
Eqs.~70! and ~44! for gradients and scalar differences ind
cate indeed that the former decrease much more slowly. S
behavior is physically understood in terms of fluctuations
the dissipative scale as follows. Gradients can be though
as scalar differences evaluated at the dissipative scale.
scale is, however, a dynamical quantity and fluctua
~strongly in a problem with inverse transfer like the o
here!. The statistics of these fluctuations are actually rela
precisely to those of the variablem introduced in Eq.~57!.
The fluctuations ofen are therefore the product of those
scalar differencesand those of the dissipative scale. The la
ter do not depend on the dimensional parameters of the p
lem, i.e., they are universal as follows from Eq.~60!, but
grow factorially with the ordern. This factorial growth is
precisely what shifts the dominant term in Eq.~65! from
2n ln n to 3n ln n. It follows then that the slower decay o
the tails for gradients with respect to those for scalar diff
ences is indeed due to dynamical fluctuations of the diss
tive scale.

VII. CONCLUSIONS AND DISCUSSION

We analyzed in the present paper statistics of the pas
scalar advected by a one-dimensional, smooth, and
correlated-in-time velocity field. In spite of its extreme sim
plicity, the dynamics presents very interesting and surpris
behaviors. We expect that many of them are quite gen
and it may be interesting to look for more realistic sca
-
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r-
n

ch
f
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s

d

b-

-
a-

ve
st-

g
ic
r

~and generally turbulent! problems where the effects dis
cussed here could be of relevance. Thus we recall and br
comment on the major properties of the model discusse
the paper and address, in parallel, the respective ques
for future studies.

The first major property of the dynamics isthe inverse
cascade of the scalar. The inverse cascade is a consequen
of compressibility, but in a subtle way: In@25# we considered
indeed a generalized smoothd-dimensional model having
the degree of compressibility as a free parameter. A tra
tion between inverse and direct cascades is observed the
d.4, the cascade is always direct, independently of the
gree of compressibility; if the latter is small enough, t
cascade is direct again; otherwise, it is inverse. It might a
be interesting to look from the same dynamical point of vie
used here at the critical dimension appearing in the pas
vector problem discussed in@26# and at the role of compress
ibility for the direction of energy transfer in other turbule
situations, e.g., 2D Navier-Stokes and turbulence in mag
tohydrodynamics.

Dynamically, the inverse cascade is associated with
fact that the Lyapunov exponent for Lagrangian trajector
is negative. This implies that,in the case of inverse cascad
contraction of Lagrangian trajectories is typical and stretc
ing is a relatively rare event. This is precisely the opposite o
the canonical picture associated with the direct cascade. R
trajectories~contracting or stretching if the Lyapunov expo
nent is positive or negative, respectively! are responsible for
the intermittent part of the problem. This definitely confirm
the picture that contractive trajectories play a crucial role
the intermittence in incompressible turbulent transport.

A negative Lyapunov exponent leads to the third obs
vation emerging from the analytical study of the model:The
Gaussian statistics of the scalar is established at sca
larger than the scale of the pumping, while strong interm
tence is present at small scales. The small-scale intermit-
tence found here is of the Burgers type, i.e., all scalar diff
ence integer moments scale linearly;r /L. This result gives
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a definite ground to speculate that, generally, the stronge
degree of compressibility~the role of contracting trajectorie
is then enhanced!, the more intermittence downscaling of th
pumping is observed. Note with respect to the Gaussian
ture that the inverse cascade of energy in 2D Navier-Sto
turbulence is also Gaussian according to the numerics@27#. It
raises yet another conjecture of a certain generality of
Gaussian feature for a great variety of direct cascades.

The equation for the scalar difference PDF, derived
rectly from the dynamics in Sec. V, shows thatno dissipative
anomaly is presentin the model. In the general one
dimensional model introduced in@14#, g51 is a natural
threshold for the inverse cascade. Atg.1 the cascade is
direct, while it is inverse atg,1. Most probably this mean
that there is no dissipative anomaly~the equation for the
PDF of the scalar difference could be closed! for g,1. How-
ever, it is not yet clear how to derive this consistently~as it is
derived here for the smooth limitg50!. Note that the gen-
eral question of the role of the dissipative anomaly in
passive scalar physics is not yet resolved in any sense~some
suggestions on this point may be found in@6,19,28#!. One
more unresolved question is how the dissipative anomaly~if
any! affects the anomalous scaling behavior of struct
functions of integer~and generally all! orders.

An important result for the issue of convection-diffusio
interplay is thatthe effective dissipative scale, which sets the
crossover scale between the scalar difference 2nth moment
in the convective range and the dissipation fieldnth moment,
is a strongly fluctuating quantity, growing factorially withn.
To make this statement, we have analytically calculated
Sec. VI the dissipation field PDF exploiting a different sca
separation procedure, which is also used in Appendix B
describe the long-time dynamics of the pair-correlation fu
tion of the scalar gradients. The procedure is likely to b
general tool for resolving the problem in other situation
Particularly, a slight~matrix! modification of the method
should be relevant for the Kraichnand-dimensional incom-
pressible smooth model.

Finally, the eddy-diffusivity operator is Hermitian for th
Kraichnan model, where the random velocity is incompre
ible and fast.The Hermitian nature is lost when compres
ible flow is considered. Generally, it might be interesting t
look at scalar transport~and particularly at flow with finite
correlation times! from the point of view of non-Hermitian
nature. This issue is the subject of very recent interest in
field of disordered systems@29–32#. The specific object of
interest for scalar transport is the resolventR(t;x,y), de-
scribing the probability to find a Lagrangian separation eq
to x at timet, having initially been equal toy. One may then
want to study the distribution in the complex plane of t
poles of its Laplace transform. A width of the poles’ doma
along the imaginary direction might be a characteristic of
trapping degree.
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APPENDIX A: DYNAMICAL FORMULATION
BY FIELD FORMALISM

Let us consider the gradient fieldv(t,x) satisfying the
equation of motion~4! with the velocity u(t,x) having
Gaussian statistics and correlation functi
^u(t,x)u(t8,x8)&5V(t2t8,x2x8). The generating func-
tionalF~l! for its simultaneous correlation functions can
written in the form of a functional integral~see@33,34#!

F~l!5E Dp Dv Du expH 1

2
~pux9up!2

1

2
~uuV21uu!

1 i E
0

T

dt dx p@] tv1]x~uv!2k]x
2v#

1E dx l~x!v~T,x!J . ~A1!

Here (uuV21uu) denotes the diagonal matrix element of t
inverse operator toV(t2t8,x2x8) in the Hilbert space of
the functionsu(t,x) and the pumpingx9 is the second spa
tial derivative of the forcing correlation functionx, defined
in Eq. ~2!. The retarded regularization of the time derivativ
(] tv)n5(1/D)(vn2vn21) does not produce any nontrivia
Jacobian after derivation of Eq.~A1! from the equation of
motion.D→0 is the temporal slicing andvn(x)[v(nD,x).
Performing the Gaussian integration over the fieldu(t,x),
we arrive at

F~l!5E Dp Dv expH 2
1

2
~v]xpuVuv]xp!1

1

2
~pux9up!

1 i E
0

T

dt dx p~] tv2k]x
2v!1E dx l~x!v~T,x!J .

~A2!

For the case ofd-correlated-in-time velocity fields consid
ered in this paper, we replace the generalV(t2t8,x2x8) by
specificd(t2t8)V(x2x8). The explicit version of Eq.~A1!
then reads

F~l!5E D pDv expS 2S1E dx l~x!v~T,x! D ,

~A3!

S5
1

2 E
0

T

dtF E dx dx8~v]xp!~ t,x!V~x2x8!~v]x8p!~ t,x8!

2E dx dx8p~ t,x!x9S x2x8

L D p~ t,x8!G
2 i E

0

T

dt dx p~] tv2k]x
2v!. ~A4!



ar

te

t

ny
id

n
a

s
m

me-
the

ch
ction
i-

by

w-
n,

d
of

ng

56 5497INVERSE CASCADE AND INTERMITTENCY OF . . .
Despite the explicit presence of theV term in Eq.~A4!, the
dynamical part of the actionS is covariant with respect to
Galilean transformations. This leads to the important W
identity

E Dp Dv expS 2S1E dx l~x!v~T,x! D
3)

j
S E dx v~ t j ,x!]xp~ t j ,x! D50, ~A5!

where the set$t j,T, j 51,2, . . .% is arbitrary. To prove it, let
us consider the change of variables

p~ t,x!→pS x1E
t

T

v~t!dt,t D ,

v~ t,x!→vS x1E
t

T

v~t!dt,t D ~A6!

in the functional integral~A3! with v(t) being uncon-
strained. The transformation does not change the source
and it has a unit Jacobian. The variationdS of the actionS
under the transformation reads

dS52 i E
0

T

dt v~ t !S E dxv~ t,x!]xp~ t,x! D . ~A7!

The change of variables does not change the value of
integral. Thus all the functional derivatives of Eq.~A3! over
v(t) are equal to zero. Taking into account Eq.~A7!, one
finally arrives at the Ward identity~A5!.

All expressions written above are applicable for a
short-correlated velocity field. Now let us narrow the cons
eration to the case of smooth velocity field~3! with g50.
One gets

F~l!5E Dp Dv expS 2S1E dx l~x!v~T,x! D ,

~A8!

S5
1

2 E
0

T

dtF2E dx dx8~v]xp!~ t,x!~x2x8!2~v]x8p!

3~ t,x8!2E dx dx8p~ t,x!x9S x2x8

L D p~ t,x8!G ~A9!

2 i E
0

T

dt dx p~] tv2k]x
2v!, ~A10!

where theV0 term was dropped due to Eq.~A5!. The goal is
to reduce the problem to averaging of a functional of o
random-in-time scalar field, analogously to the random m
trix description used in the two-dimensional@5,35# and gen-
erally d-dimensional cases. However, in the present ca
compressibility calls for further evaluation. Let us perfor
the following change of variables in Eq.~A8!:
d

rm

he

-

e
-

e,

$p~ t,x!,v~ t,x!%

→H pS t,x1 i E
t

T

dtE dy y2]yp~ t,y!v~ t,y! D ,

vS t,x1 i E
t

T

dtE dy y2]yp~ t,y!v~ t,y! D , ~A11!

which can be considered as the field-dependent and ti
dependent homogeneous spatial translation leaving
source term intact. Analytic continuation of the fields, whi
makes the spatial arguments real, is assumed. The a
~A9! gets the following form being rewritten in the new var
ables:

S5
1

2 E
0

T

dtF2S E dx x~v]xp!~ t,x! D 2

2E dx dx8p~ t,x!x9S x2x8

L D p~ t,x8!G
2 i E

0

T

dt dx p~] tv2k]x
2v!. ~A12!

The transformation~A11! has a nontrivial Jacobian

DpDv→DpDvJ~p,v! ~A13!

that depends on regularization. The regularization is fixed
the requirement for the temporald function from the corre-
lation function of velocities to appear as a result of narro
ing of an even function of temporal argument. In additio
the correctly regularized action~A12! should reproduce the
respective correlation function in the limitT→0:

pn~x!→pnS x1
i

2
DE dy y2]ypn~y!vn~y!

1 iD (
m5n11

N E dy y2]ypm~y!vm~y!D ~A14!

for vn(x). The JacobianJ(p,v) can be computed easily

J~p,v!5expS 2 i E dt dx xv]xpD . ~A15!

The exponential of the term*0
Tdt(*dx xv]xp)2 in the action

~A12! multiplied by the Jacobian~A15! can be represente
by means of averaging the exponential
i *0

Tdt s*dx x v]xp over the auxiliary field s(t). The
Gaussian measure of averaging overs is defined in Eq.~21!.
It results in the following representation for the generati
functionalF~l!:

F~l!5E Dp Dv Df Ds expF2Ss2
1

2
~ f ux21u f !G

3expF i E
0

T

dt dx p@] tv2s]x~xv!2k]x
2v2]xf #

1E dx l~x!v~T,x!G . ~A16!
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Integration overp(t,x) gives the reduced equation of motio
in the reference frame comoving with a fluid particle

] tv2s]x~xv!2k]x
2v5]xf , ~A17!

averaged with respect tof (t,x) and s(t) with the weights
given by the first line of~A16!. It should be stressed that th
equivalence holds only at the level of simultaneous corre
tion functions.

APPENDIX B: LONG-TIME BEHAVIOR
OF THE PAIR-CORRELATION FUNCTION

OF GRADIENTS

In the present appendix we will find the long-tim
asymptotic of the pair-correlation function of the scalar g
dients V(t,x) that obeys Eq.~5!. We will model here the
infrared cut-off of the velocity correlations by

S~x!5x2, x,Lu , S~x!5Lu
2 , x.Lu . ~B1!

The Laplace transform of Eq.~5! has the form

sVs2]x
2@S~x!12k#Vs1x9~x!/s50. ~B2!

The solution of Eq.~B2! can be written in terms of the
Green’s functionGs(x,x8) @which is taken to be even inx,
Gs(x,2x8)5Gs(x,x8)] as

Vs~x!52
1

s E0

`

Gs~x,x8!x9~x8!dx8,

sGs2]x
2@S~x!12k#Gs5d~x2x8!. ~B3!

The desired long-time asymptotic corresponds to the sma
s and our aim is to find the singular structure ofVs(x) at
smalls andx@Ak. In what follows we will then neglect al
logarithmic contributions such ass lnLu ands lnx. We will
also neglect the smallestx8 (x8!Ak) contribution in the
integral ~B3! going to zero in the limit of small diffusivity.
Therefore,Gs(x,x8) should be studied atAk!x8!Lu and in
all the allowed domains with respect tox.

Making the substitutionGs(x,x8)5g(x,x8)/@S(x)12k#,
one gets

s

S~x!12k
g2]x

2g5d~x2x8!. ~B4!

The solution of Eq.~B4! in the domain of the larges
x,x.Lu.x8@Ak, can thus be written as

g~x,x8!5AexpS 2
As

Lu
~x2Lu! D . ~B5!

Note, however, that only the first two terms of the expans
~B5! in s will be required for matching hereafter. Ifx is
smaller thanLu , but still larger than a separation scalex0 ,
one can omit the first term on the right-hand side of Eq.~B4!
and write the general solution of Eq.~B4! in the intermediate
domain, atLu.x@Ak,
-

-

st

n

g~x,x8!5 H F11xF2 ,
D11xD2 ,

x,x8
x.x8.

~B6!

Here, the constantsF1 ,F2 ,D1 ,D2 should be fixed via inner
matching atx5x8 and outer matchings atLu and x0 . The
value ofx0 , restricted byAk!x0!Ak/s, defines the upper
bound for the scales at which one cannot omit the first te
of Eq. ~B4! anymore. However, the point is that atx,x0,x8
an actual dependence ofg on x0 has disappeared and w
should not locatex0 explicitly to get the asymptotic behavio
of g(x,x8). Indeed, integrating Eq.~B4!, we get

]xg~x!5sE
0

x g~z!dz

S~x!12k
, ~B7!

where the argumentx8 is omitted and it is already taken int
account thatg(x) is even: ]xg(x)ux5050. Equation~B7!
shows that thex derivative changes sufficiently at the diffu
sive scale, being nonetheless small there. This means tha
function g(x) at x&x0 is a constant in the leading~zero!
order ins. The subleading~first order ins! term is then fixed
by Eq. ~B7! taken atx5x0 . All together this gives the fol-
lowing expression forg at x,x8 with the desirable~for the
forthcoming matching! accuracy:

g'g0S 11sxE
0

x0 dz

S~x!12k D'g0S 11s
px

2A2k
D ,

~B8!

where, evaluating the integral in Eq.~B8!, we used that
Ak!x0 . Matching Eqs.~B5! and~B6! and Eq.~B8!, we get

D11x8D25F11x8F2 , F22D251 at x5x8,

D11LuD25A, D252
As

Lu
A at x5Lu ,

F11x0F25g0 , F25sg0

p

2r d
at x5x0 . ~B9!

Keepings very small, while the ratioss/Ak andAs/Lu are
finite, one derives from Eq.~B9!

F15g05
11x8As/Lu

sp/~2r d!1As/Lu

, F25
sg0p

2A2k
,

D15A5
2A2k1x8sp

sp12A2ks/Lu

, D252
As

Lu
A. ~B10!

It is worth noting that the explicit value ofx0 does not enter
Eq. ~B10! and the scale separation procedure is indeed ju
fied. Substituting Eq.~B10! into Eq.~B6! (x8,Lu), one gets

Vs~x!5
1

S~x!12k Fx~x!

s
2

x~0!

s1aAs
G , a5

2A2k

pLu
,

~B11!

and the inverse Laplace transform
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V~ t,x!5
1

S~x!12k Fx~x!2x~0!
2

p E
0

`

dp
exp~2a2p2t !

p211 G .
~B12!

Expression ~B12! states that, at the times less th
TL ;Lu

2/k, the correlation function coincides with the qu

u

,

,

.

sistationary limit given by Eq.~7!. At the largest times,
V(t,x) approaches the asymptotic value

1

S~x!12k
x~x! ~B13!

diffusively, x(x)2V@S(x)12k#5C→x(0)(a2pt)21/2.
.
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