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Random advection of a Lagrangian tracer scalar fi#fidx) by a one-dimensional, spatially smooth and
short-correlated in time velocity field is considered. Scalar fluctuations are maintained by a source concentrated
at the integral scalé. The statistical properties of both scalar differences and the dissipation field are ana-
lytically determined, exploiting the dynamical formulation of the model. The Gaussian statistics known to be
present at small scales for incompressible velocity fields emerges here at large xdlgs These scales are
shown to be excited by an inverse cascadegdfand the probability distribution functioPDP of the
corresponding scalar differences to approach the Gaussian form, as larger and larger scales are considered.
Small-scale X<<L) statistics is shown to be strongly non-Gaussian. A collapse of scaling exponents for scalar
structure functions takes place: Moments of onglerl all scale linearly, independently of the orgerSmooth
scalingxP is found for —1<p<1. Tails of the scalar difference PDF are exponential, while at the center a
cusped shape tends to develop when smaller and smaller xdtioare considered. The same tendency is
present for the scalar gradient PDF with respect to the inverse of thetPemberthe pumping-to-diffusion
scale rati¢. The tails of the latter PDF are, however, much more extended, decaying as a stretched exponential
of exponent 2/3, smaller than unity. This slower decay is physically associated with the strong fluctuations of
the dynamical dissipative scale51063-651X97)08311-9

PACS numbe(s): 47.10+g, 47.27+i, 05.40+j

I. INTRODUCTION compressibility might slow down Lagrangian separations
and thus lead to nontrivial scaling and intermittency proper-
Small-scale statistics of a passive scalar advected by tes. These can then be analyzed systematically, using tech-
large-scale incompressible velocity field is an old problem inniques specific for smooth velocities. Positive Lyapunov ex-
turbulence theory1,2]. Scalar fluctuations are maintained by ponents are indeed characteristic of an isotropic, solenoidal
a large-scale forcing, with typical scale According to the flow [11,12, but this property might be lost when compress-
classical picture[g] of direct cascade of the scalar, the in- ible flows are considered. It is, for example, known that for a
jected scalar is mainly transferred downscale to the conveccompressible flow a substantial slowdown of long-time
tive interval and then to the dissipative region. For smoottransport can take pladsee[13]). Since trapping effects are
velocities, the statistics of this scalar transfer can be analyze@mplified when the dimensionality of space is low, we have
systematically and has been characterized in much detail ffPcused our attention on the one-dimensional case. More

[2,4,5]. The core of the one-point scalar probability distribu- specifically, we have considered the smooth limit of the one-
tion function (PDF) is Gaussian with varianc®(In Pe) dimensionals-correlated-in-time model recently introduced

where the Pelet number Pe is very lardé]. Far tails of the in [14]. In the absence of pumping and o!issipation, any func-
PDF decay exponentialljd,5]. The physical key ingredient tion of the tracem(t,x) (say, temperatujas advected along

. ; - Lagrangian trajectories and globally conserved on average
at the basis of these results is that material lines are stretche rovided the velocity is temporarily fast or spatially

i.e., the maximum Lyapunov exponentfor particle separa-  gmooth). Switching on the energyé®) supply at the integral
tion is positive. Typical trajectories will therefore be expo- scale, one expects that a steddy quasisteady, as discussed
nentially stretched and dynamically contracted trajectoriesn Sec. 1) distribution of the scalar is attained. The main
are so rare that they can only affect the extreme tails of tthestion raised here is how trapping effects due to compress-
statistics. On the other hand, much interest has been directggility affect the redistribution of energy among the scales
recently at the Kraichnan modg#] for its intermittent scal-  and the intermittency properties of the scalar field at the sta-
ing behavior[7—9]. The picture emerging there is that dy- tionary state. To answer this guestion, we exploit the dy-
namically contracted Lagrangian trajectories play a cruciahamical formulation of the model to calculate the statistical
role for structure functions scaling exponetitsand thus for  properties of¢ both upscale and downscale, i.e., at scales
intermittency. The constant asymptotic behavior{gffor  smaller and larger than the integral schleSince the scalar
large ordersp found in[10] comes, for example, from the is a tracer in the velocity field and the velocity is smooth, the
most contracting possible trajectories and the vdludrom  problem reduces to studying Lagrangian separations statis-
nontrivial fluctuations of the degree of freedom constrainedics.
by incompressibility to still be dynamically stretched. The major physical difference appearing with respect to
Previous remarks have led us to investigate scalar transhe incompressible case is that the maximum Lyapunov ex-
port in a smooth compressible flow. The motivation is thatponent for Lagrangian separations is negative. This means
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that, along typical trajectories, distances are mostly conthe scalar PDF was studied for the incompressible case by an
tracted and the stretching process is strongly intermittent ifnstanton techniqug This factorial dependence is the cause
time. As in[15], the second and higher powers of the dis-of the 1/3 stretched exponential.
tanceR(t) between Lagrangian trajectories grow exponen- Even though the explicit calculations are quite lengthy,
tially, while its low-order positive moments decay exponen-the underlying technical ideas, which make the analytical
tially. This is the dynamical origin of the major results found calculations doable, are simple to explain. Since the scalar is
in this paper: inverse cascade and Gaussian statistics at largassive, itsith-order correlation function can be presented in
scales and extreme intermittency at small scales. terms of a matrix element of an auxiliary quantum mechan-
Scalar correlations are indeed essentially governed by thies. There are then two important steps in the evaluation of
statistics of the time spent by particles at distances smallesuch matrix elementgéand thus of the scalar PDFdFirst,
thanL. Consider then two particles initially separated by asmoothness of the velocity fielstretchings and compres-
distancex>L. Despite the fact that>L initially, the dis-  sions are uniform on all the particleallows us to reduce
tance R(t) will typically reduce toO(L) for large times (Sec. lll and Appendix A the multiparticle problem to a
~In(W/L)/|\|]. The consequence is that even scales muclQne-parameter problem. The fact that the Lyapunov expo-
larger thanL are strongly excited and this is the dynamical "ent is negative clearly emerges in this procedure. This
hint of the inverse energy cascade. Moreover, for momentt€ads, after the very direct calculations of Secs. IV and V, to
of ordern<In(x/L), relative fluctuations around the previous & COmpact expression for the PDF of the scalar differences in
typical time are small and this leads to the Gaussian statistid§!® convective interval. Here the temporal dynamics of the

of scalar difference PDF. On the contrary, the statistics afluctuating degree of freedom is local, while the locality is
small scalex<L is associated with the stretching process.'OSt in the dissipative range. The second step then comes into

The time to reach the integral scalestrongly fluctuates and play. To describe the convection-diffusion interplay in Sec.

this is reflected in the intermittency of both scalar differences’! @nd Appendix B, we use a scale separation procedure.
and gradients. The temporarily nonloca{diffusive) and local(convective

Note that the inverse cascade of the scalar taking placdynamics of the fluctuating degree of freedom are well sepa-
here differs in one important respect from other known ex-ated by timety, 1<t,<In[P¢], if the Pelet number Pe is
amples of inverse cascadésy, an energy cascade in two- Iargg. The independence of the resulting averéapey, the
dimensional (2D) Navier-Stokes turbulencgl6] and the 9radient's PDFFover both local and nonlocal domains oy
number of wave cascades in wave turbuleficd): No flux ~ @nd the smaliness of the neglected terms with respect to the
of another integral of motiorfsuch as enstrophy or wave Inverse Pelet number justifies the scale separation proce-
energy is present. The origin of the inverse cascade foundure- _
here is purely dynamical and associated with trapping ef- The plan of the paper is as follows. In Sec. Il the one-
fects. An interesting consequence of the inverse cascade fémensional passive scalar model is briefly recalled, its rel-
that the equation for the velocity difference PDF, derivedévant time and length scales are discussed, and the inverse
here exactly from the dynamics, coincides with the one with-cascade issue is explained from consideration of a scalar
out a dissipative anomalgan operator product expansion, pair-correlation function. The dynamical formulation associ-
which may result in the anomaly, was proposefllig] in the ated with the_ passive scalar equation is the subjecF of _Seq. i
context of the Burgers turbulence; see d1$6] for possible ~@nd Appendix A. The latter is based on the Martin-Siggia-
extensions to the passive scalar turbulgn@te absence of Rose formalism, while the former is in terms of the particle
an anomaly is indeed a consequence of the inverse cascad@/malism. A key point arising in both procedures is that
preventing the rare trajectories emerging from the dissipativ€ompressibility couples the dynamics with a global mode.
range from affecting the convective range behavior. This mpde must the_n be taker_1 into account in order to get the

Strong downscale intermittency emerges all over thedynamical formulatlon_s. Mulupo;nt correlation functions .of
quantities calculated in Secs. IV-VI. Moments of scalar dif-Sc@lar gradients are discussed in Sec. IV. The scalar differ-
ferences of orden=1 all scale linearly withx, indepen- €NCe PDF is described in Sec. V, where behaviors upscale

dently of the order. This collapse of exponents carries over t&"d downscale with respect koare considered in Secs. V A
the dissipation fielde, which has all its integer moments @nd V B, respectively. To describe the advection-diffusion
scaling with the same power of thé ket number. Smooth mterplay, we develop a scale separation procedure in Sec.
scaling is observed for low-order moments of both scala!: Which is devoted to the PDF of dissipation. We use the
differences and dissipation. Very large fluctuations of thes§Calé separation procedure also in Appendix B to study the
two quantities behave, however, quite differently. The scalafluestion of how the steady regime for the pair-correlation
difference PDF has indeed a Lorentzian shape for valuefiinction of the gradient&discussed in Sec.)iforms. Section
smaller than unity and exponential tails. The tails of the dis VIl is reserved for conclusions and a discussion of guestions
sipation field PDF are, on the contrary, stretched exponerfhat may be of a general relevance for other problems in
tials with exponent 1/3and not 1/2. The additional prob- turbulence and physics of disordered systems.

ability for these strong events comes from fluctuations of the

dynamical dissipative scale. A comparison of th mo- Il. MODEL. THE PAIR-CORRELATION FUNCTION

ment of the dissipation field with then?h moment of the AND INVERSE CASCADE

scalar differences establishes indeed the effective viscous

scale. This appears to be a strongly fluctuating quantity, Our aim here will be, first, to briefly recall the equations
growing factorially withn. (An essential enhancement of the of the one-dimensional model introduced [i], and then,
dissipative scale was observed alsd20], where the tail of solving the equation for scalar pair correlation function,
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show the effects of compressibility on the redistribution ofconsider the situation when the system starts from rest
energy among the scales and how the inverse cascade of the=0). At any subsequent time, the solution satisfies

scalar works. JQdx=0, where the integral is taken over all the space.
The advection-diffusion equation governing the evolutionNote that such a condition is consistent and actually dictated
of the passive scalaf(t,x) is by the dynamics: The integral of the correlation function of
) the gradients is conserved in the evolution on account of the
00+ udy 0=k 6+f. (1) double space derivative on the right-hand side of(Bj.It is

R then easy to find the stationary solution of ,
[Note that there are two types of passive fields for compress- Y y 5

ible flow. Lagrangian tracers, like entropy or temperature

(provided pressure is slowly varying in space and jinaee (XIL) C f x/(2x+9S)
conserved along Lagrangian trajectories in the absence of)(x)= X - where C=

diffusion and pumping. The local maxima of the field do not 2k+8(x)  2k+38(X) j 1U(2k+S)
grow in the absence of pumping. Concentration fields, e.g., K

of a pollutant, are, on the contrary, only globally conserved (7)

and their maxima can be amplified. The equations for the . ) o

two types of fields differ by the position of the space deriva-[S€€ Appendix B for a dynamical derivation of E@)]. Ex-
tive in the velocity term. In our one-dimensional case, thePression(7) is very illuminating for several reasons. Let us
two possibilities correspond to tieand o fields, respective- ~ first consider the case where no infrared cutqffis present.
ly.] The velocity fieldu and the forcef are both assumed The integral/1/(2«+S) is then convergent and, for small

to be Gaussian and-correlated in time. The force has the molecular diffusivity, varies as k. For the sake of con-
correlation function creteness, let us specifically consider here a forcing that is

regular at the origin. The dominant terms for distances much

X=X smaller than the integral scaleare then
(f(t,x)f(t’,x’))=5(t—t'))((T) 2 ?
X" (0)]
spatially concentrated at the integral scale The velocity Q(x)= 2(2k+ S)Lz[a'-\/;_ X7, ®

has zero average and the correlation function
PN , , wherea is constantO(1), dependent on the detailed form of
{utxju(t’,x"))=[Vo=S(x—x")]a(t-t') the pumping. The first and the second term dominate, respec-
with S(x)=|x|?77. (3) tively, at scales smaller and larger thah\/Pe, where the
Peclet number PeL/\2« is supposed to be very large.
The specific smooth case considered here corresponds fgote that this scale is still much larger than the dissipative
y=0. The scaling behavior of the structure functiSrper-  scalelL/Pe. The most interesting aspect of E8).is that the
sists up to the infrared cutoff,, the largest scale in our dissipation«(0) vanishes as 1/Pe, i.e., there is no direct
problem. The scale-independent part of the velocity correlacascade. The energy is actually transferred upscale by an
tion function V, is estimated by the infrared cutoff of the inverse cascade, as also emerges from the behavior of scalar
velocity field squared~L2. For scales larger thahn,, ve- correlations[It is important to mention that, in the absence
locity correlations decay to zero, i.e., the structure functiornof pumping and dissipation, the average over the velocity of
saturates to the constant valMg. The equation of motion any function of the scalaf(6) is conserved, although the
for the gradient fieldw = 9,6 immediately follows from Eq. average over all the space ©f6) itself is not conserved in
(D): the particular realizationsLet us indeed insert into Eq6)
the correlation( (t,x;) 6(t,x,))= "L [*2 Q(y;—Yy,) with
the w-correlation function having expressign). It is easily

. . 2 _ . .
The & correlation in time of both the velocity and the forcing Shecked that the energy satisfieg6%)=C, i.e., it grows
allows us to derive closed equations of motion for equal-timdn€arly with time. Note that the growing mode is constant in
correlation functiong2]. It is easy, e.g., using Gaussian in- SPace and thus disappears when differences or gradients are

tegration by partdsee[21]), to derive the equation for the considered. The effect of the advective tem, ¢ is there-
second-order  correlationsQ(t,x) =(w(t,x) (t,0)) and fore to transfer energy upward in scale. Since dissipation is

Ao+ dy(Uw) = k2w + dyf. (4)

_ quadratic in wave number, the energy on large scales cannot
F(t)=(0(tX)6(1,0), practically be dissipated and it is accumulated. This is at the
(9tQ=(9)2({[5(X)+2K]Q}_(9§X, (5) origin of the linear growth in time of #%). C#0 corre-
sponds to the inverse cascade, which therefore holds generi-
aF =[S(x) +2K]32F + x. (6)  cally for any scaling exponent<1 in Eq.(3) (if the source

function y is not exceptional
It is convenient to consider first E¢h) and then recover the Let us now introduce an infrared cutdff, in the velocity
correlations of the scalar by integration. From the very defifield. SinceS saturates to a constant, it is clear now that the
nition of the correlation function, it follows that the solution integral f1/(2«+S) diverges. The constart in Eq. (7)
of Eq. (5) is even inx. Looking for a stationary solution, must then vanish. In the presence of a finite culgff there
there is another boundary condition needed to fix the integrawill then be a very long, intermediate-time asymptotic where
tion constants. This comes from the dynamics. Let us indeetbr scales<L, the behavior without cutoff is observed.
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However, after a very long tim&_~ (L, /«)? the dynamics  bian of the transformation from the Eulerian frame to the one
u

changes: The inverse cascade stépd) saturates to a finite  COM0Ving with a fluid particle. The dynamical formulation is
value, the system starts dissipating a finite amount of enerngr,'Ved h_ere using Pf?‘f“,c'e formaﬁsm. The ?qU'Ya'e”t deri-
in the limit of large Pe, and the correlation functiéh(x) vation using Martin-Siggia-Rose field formalism is reserved

tends to the solutiori7) with C=0. The finite contribution for the A_ppend|x A, ) .

— [x/(2x+$S) needed to ensure the zero integral condition Equation(1) for the passive scalar can be presented in the
comes from a strip of negative values that becomes more a

more extended with time and whose amplitude tends to van-

ish. More details on the dynamics of the pair-correlation 0(T'x)=f
function of the scalar gradients at infinite times in the pres- ’ 0
ence of an infrared cutotf , may be found in Appendix B.

T

TA
Tex;“' P(t’;x)dt’} d(t;x)dt
t

;
:f dtf dy V(t,T;x,y) p(t;y), ©)
lil. DYNAMICS IN PARTICLE 0

(LAGRANGIAN ) FORMALISM

. . . . . where it was supposed that no pumping was supplied at
In this section we shall discuss the dynamical formulatlonnegaﬁve times. In Eq. (9 the operator P(t;X)

of the equations of motion. Th_e goal is the same 6[5’2.2]'. = —u(t;x)dy+ kJ>, the time-ordered exponential is denoted
to reduce the calculation of simultaneous scalar statistics t8 T exo. and tr);e function can be expressed by usin
averaging of functionals of the random-in-time strain- Ly P, . : b y 9
vorticity matrix. This reduction is crucially based on the fact agrangian trajectories as
that the velocity field is smoothy=0) and can be per-

- : p(T)=x T
fqr_med for any.smoo.th flow, independently of .|ts compress- ‘If(t,T;y,x)=f Dp ex;{ _f (p—u)?4x|.
ibility and the dimension of space. In the specific 1D case, no p(t)=y t
matrices are obviously involved and one is left with averag- (10
ing of a single scalar field. Compressibility, however, makes
the derivation slightly more involved and some care must bélhis formula expresses the simple fact that Lagrangian tra-
taken in the ordering of the advective term. This emerges, ifectories are fixed by the velocity and smoothed by the
particular in the nonvanishing average @fin the weight molecular diffusivity k. One can express Eq10) in the
(21) for the Lagrangian trajectorig22) and nontrivial Jaco- more convenient Hamiltonian form

N—1 N—1 N
pPo=Y 1
V(L Tixy)= I dpy 11 dpy exp[AE (Kpn_l(pn—pn_ﬂ—pn_lu(tn;pn>+xpﬁ_1ﬂ, (11
pn=X Nn=0 n=1 n=1
T—t
Pn:P(tn:t+nA)v pn:p(t+nA)v Afmﬂo, (12)
|
where the momenta integrationg,) run along the imagi- 2n

nary axis and regularizations have been specified. Using the R(T;X; ,yi)EH (W(T,0;;,yi))
property that both velocity and pumping are Gaussian and =1

have correlation function&) and(2), we can easily perform pi(M =y T _
the averages in thergzh simultaneous product of the scalar = f o IDPi(t)IDpi(t)eXF{ L dt[pipi
field 8(T;x). We thus obtain pi(0)=x

_%pi(Pi_Pj)zpj+Kpi2])- (14
F(T;Xli' i !X2n)E<0(T1X1)' o 0(T1X2n)>

T 2n Here one inverses the direction of time in comparison to Eq.
:f dtf IT dyR(T—t;x,y)) (11) (t—T—t) and thus the convective termp?p?) is regu-
0 i=1 larized in a way such that itg-dependent part is retarded
STE(t: _ with respect to thep-dependent part. The Hubbard-
[F(tY1.-- Yan-2)X(Yon=Y2n-1) Stratonovich transformation of the diffusive term gives

+ (permutationy, (13 -
PilT)=Y;
R(T:xi,Yi) = © Dpi(t)Dp; (1) Déj(t)exd —S—Sel,
PilY)=X;
where the eddy-diffusivity resolvent is defined as (15
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T o ) continuous versions of the equation under #fenction sign
S§= JO dtf = pipi+ 2Pi(pi— pj) P — Pi&il, in Eq. (19) and the measure of averaging oveiare
1 T pi=opité&—é&, o=o-1, (20
— 2
S; ax JO &dt. (16) Lo
S,=— f difo+1]2. (21)
4 Jo

In the integration in Eq(13) of the resolvent, the corre-

lation functionF and the pumping correlatiopappear. Both , i ) i )
depend on the difference of the coordinates only. This mearl&Y continuous version we mean, in particular, a symmetri-
cal smearing of the temporalfunction in theo-field corre-

that one can simply integrate with respect to collective vari--“ - PR
ables, say p:%);_ a?wd the coIIF()active momentum lation for a small but finitewhich is still much larger than
) 1 I

P=32" /2n. To get rid of the superfluous dearees of free_the temporal slicé\) width.] To see the relafcion be_tween Eq.
dom ! Fét us mgove from thep old set gf variables (19) and Eqs.(20) and(21) one can check in particular that
' both discrete and continuous versions giyg(t)) = p;(0).

s DY o P to the new one .
}Z,lﬁz,..p.z,%zf;lP,”ﬁzF?%r-]-}flazn}- The new moment@ —p,—p 1M  negatvity of the Lyapunov  exponent

are considered in the system comoving with the “center of*= Mt IN(W(t)/t]} follows from Eq.(21). The formal so-
mass” and the positiori, = p; — p, are with respect to one, Ution of Eq.(20) is
e.g.,p1, taken as reference. The actiSrcan then be decom-

posed asS=Scor+ S, where PO =W(t) (X —Xq) +W(t) f;dt'w*a')(si—gﬂ,

T 2
Scmzf dt[—Pz(E [z +2nP2(2 ’5?)
0 i>1 i>1

W(t)EexL{ ftdt’o(t’) . (22
0

+2nP(2 Eirﬁiz)_ZP(E 5@)( ZJ)_Pb o . .
>1 i>1 i>1 It is finally easy to recalculate thenZparticle correlation
function of the scalar from therparticle resolvent
~P2, fi}, (17)
=1 F(T;Xq,....Xon)

~ (T —\? — - —~ =(E[THa(t)}ixs—Xa] - E[T;{o(t)};Xon—1— Xon]
SEJ dt _(2 pipi) _2 DiPi_E pi(gi_gl)}- )

0 i1 =1 =1 + (permutationy) (23)

(18)
. . T Xi — X
Let us now consider the integral E[T;{U(t)};xi—xj]zj dt<X w(t) —
ST dy,R(T;x;,yi) f(y;), where, as in Eq(13), f is a 0 L
function of differences only (y;) =f(y;—Yy). Collective de- . £ ¢
grees of freedonp andP are easily integrated. The principal +W(t)f dt'w-(t) ;} ’
0
gi'j

point for this integration is the absence of a “potentig” L
dependence on the actigh The integral is then reduced to
S dyR(T;X, Vi) f(Vi+Yy1), where the effective resol- (24)

vent
where averages over(t) and &(t) are fixed by the mea-

— (=Y, sures exp-S,] and exp—S;] defined in Eqs(21) and(16),
R(T;X;,yi) = ﬁ _ Dp(t)D&(H) Do(t)exd — S, — 8¢l respectively.
Pit0)=X;
p{™—pim=b B IV. CORRELATION FUNCTIONS OF SCALAR
x| 8| ——— —GMpm=b
H i GRADIENTS IN THE CONVECTIVE INTERVAL

Using the results of the preceding section, the dynamical

(190  expression of correlation functions of the scalar gradient

o(t,x)=0d,0(t,x) can be simply found differentiating Eq.

(23) with respect to all spatial arguments. Here we shall be
and the measure of averagisg=3,[o™]%/4. In order to  interested in the behavior of these simultaneous correlation
derive Eq.(19), we have decomposed the quadratic gugr  functions for distances such that molecular diffusivity can be
term by means of Hubbard-Stratonovich trick, introducing ameglected. We first derive a general formula valid for an
additional collective integration over. The integration with  arbitrary form of forcing correlation and then treat more spe-
respect to momentuip; is already performed in the last line cifically the case of an exponential pumping. The resulting
of Eq. (19) (the effective action appears to be lineamirn expression shows that the ratio between the irreducible and
the result of the Hubbard-Stratonovich transformatidrne  the reducible contributions to thenth correlation function

g
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grows as [/x)"" . This evidences both the non-Gaussianthe range of scales where these considerations hold is post-
nature of the field and the fact that it increases going downponed to the end of the section.

scale in the convective interval. The same phenomenon takes It follows from Eg. (23) that scalar gradients correlation
place for generic forms of the pumping. The discussion ofunctions are given by

—DM [ (T - T n—Xan_
(0T X o(T X)) = LZn) <UodtW(t)x"(W(t)XlLXZH...[fodt wz(t);(”(wm—x2 LXZ lm

+ (permutationsy, (25

where molecular diffusion effects have been neglected. The , _ —TH| o= 712\ [ = T/4 )

. . ) i A=exd —T/4(5(n)|e e "y=[e "II(T; —0»
only averaging left in Eq(25) is then with respect to the XH 1ot | )=l (T, (028)
statistics defined by Ed21). A possible way of performing
this average is to introduce the auxiliary object

A(S12,Sonon_1) where the wave functiodI(T; ) satisfies (9T—I:|)H=O
' ' and the initial condition isII(0;7)=e~ 72 We can now
T X1—X - oo .
_ 2 . 17X remark that the potential part of the Hamiltonian vanishes at
<exp{ Jo w (t)(sl'QX [W(t) L } n— —, while the initial condition does not. The resulting

asymptotic behavior at large timd@swill then be

Xon— Xon—
+o e+ Sonn_1X" W(t)%bdt}. (26)
. L . : T/4H0 2
Differentiating Eq.(26) over s variables, Eq(25) is clearly H(T;p=Inly]) ——e"—, [4;+U(y)]lIx(y)=0.
reproduced up to the sign and tthedependent prefactor. T \/3—’
Inserting the weight21) into Eq.(26), one can easily recog- (29)

nize the path-integral structure associated with the time evo-

lution of the quantum-mechanical Schinger equation, ) )

having HamiltonianH = — (92”_ U(exp n)exp(2). The po- A new variabley=exp n_has been mtroduc.ed. Th_e boundary

tential U appearing in the Hamiltonian is conditions for the spatial paiil, are easily derived fro_m
those forll: TI, should tend to unity foy— 0 and the ratio

Xon—Xon—1 Iy/+\Jy should vanish fory tending to infinity. It follows
Yf} from Eq. (26) that the auxiliary objecA is simply the func-
27) tion I calculated aty=1.

Derivatives ofA ats=0 are needed for the calculation of
and the space variablegis defined asy=f{dt’ o(t’). Using  gradients correlation25). It is then convenient to present
standard notation for quantum-mechanics matrix elements, the solution of Eq.(29) in the form of an expansion with
is easy to check that E¢26) can be presented as respect to the potentid):

U(y)=s1x"

Xl_X2 "
Y= + o+ Sonon—1X

” 1 e Y2 o Yok—2 ke
A(S12:--Sonon-1)= > f dhf dYZU[Y2]f dY3f dy4U[y4]---f dka—lf dy, U Yai]- (30
k=0 JoO Y1 0 Y3 0

Yok—1

Only the nth-order term of the expansion in E¢B0) actually contributes to therth-order scalar gradients correlation
function. Its final expression reads

(="

1 ® Xk3_Xk
(w1 won)= L 2 f dylf dy,x”
0 Y1

y4|_

4

Xkl_ sz
L

Yon-2
Y2 ..fo dyan-1

y2 * "
f dys [ dysx
0 Y3

X f dynx”

Yon-1

Yo (3D

Xk2n - Xk2n— 1}
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where summation is performed over all the splittings of therange of scales where neglecting molecular diffusivity ef-
set{ky,...,Kon} into n ordered pairs. fects is allowed. Performing the small distance expansion, as
Formula(31) holds for any pumpingy. Let us now spe- in Eq. (8) for a regular pumping, a logarithmic correction
cifically consider the case of the exponential pumpingpProportional to In Pe appears. The ultraviolet criterion of ap-
xe(2) =exd —|2], where the integrals appearing in E§1) plicability of the previous convective considerations for the
can be easily performed. For the second-order correlatiorgxponential pumping is thex>x In[Pe]. For a pumping
we obtain that the dominant contribution for small distanceg€egular at the origin, the criterion is the same as in @.
x,/L is —1ixL, in agreement with the solutiofY). For  i.e., x>L/\/Pe.

the fourth-order correlation function, we find
V. SCALING AND THE PDF OF SCALAR DIFFERENCES

(0Dl Do Do, D)e Scalar structure functiorS,,(x)=([ 8(T,x)— 6(T,0)]")
=Fo(X12,X34) + Fo(X13,X24) + Fo(X14,X23), can be easily expressed in terms of scalar correlation func-
tions F by taking the appropriate combinations of them. A
dynamical expression fos,, can thus be derived directly
Xy(x+y)L’ 32 from Eq. (24), obtained in Sec. Il for thé='s. This is not,
however, a very practical procedure. Each of the contribu-
wherex;; =|x; — x;|, the subscripe is intended to remind the tions appearing in the sum giving the structure functions con-
reader that this specific expression holds for the exponentidhins indeed the constant mode. As it was discussed in Sec. Il
pumping, and only dominant terms ij; /L have been re- and as it also appears from the dynamical expres&an
tained. Distinguishing between reducilfl8aussiapand ir-  this mode grows linearly with the observation tiffie It is
reducible contributions into Eq32), one observes that the just in the whole sum that these divergent contributions are
irreducible part id./x>1 times larger. More generally, ¥  canceled, thus leaving the time-independent final result for
denotes the typical distance between the various particlestructure functions. It is then more convenient to restore
i.€.,Xjj~X, then{w; - -- wyn)~1/(x?""1L). Both the correla-  structure functions directly from scalar gradients correlations
tion functions and the degree of non-Gaussian nature of thasS,,(x) = [§dX;- - [5dXon(®@1" - w2,). An important ques-
scalar gradien{ratio of the Zth moment to its reducible tion is whether or not we can avoid taking dissipation explic-
pary are then growing with;; going downscale. itly into account in the calculation d&,, in the convective
Let us finally arrive at the range of validity of the previ- interval. This means essentially asking whether it is enough
ous convective arguments. The exponential form of theo know just the convective expressions for gradients corre-
pumping is a special one since it is not regular at the originlations or whether their whole behavior is needed. This point
The first term of its expansion at small distances is linear andan be tested by simply taking the convective expressions for
not quadratic. This affects the dependence orof the {w;---w,,) found in Sec. IV and inserting them into the
second-order correlation. For a regular pumping, the domiintegral expression fog,,,. One can then check that all the
nant term would indeed be constant, as follows from @Y.  integrals for any structure function are convergent on the
On the contrary, one can check using E8{l) that the de- ultraviolet and dominated by the infrared side of the convec-
pendence of correlations of order greater than or equal to #ve range.
onx andL remains the same as for the exponential pumping. The expression for structure functions in the convective
The regularity at the origin of the pumping also enters thenterval is then

Fe(xvy)=

|
X[0]—=xl[y2] (Y2 X[0]—x[ya]

x/L © ° Yon-2
SZn<x)=<2n—1>!!n!2”J dylf dy, = dygj dwfmf dYan-1
0 Y1 Y2 0 Y3 7 0

dysn

: (33
Yon-1 ygn

XJ’OO X[0]=x[y2n]

where we have already performed the itegrals over the vanishingx and, for the convergence of the integrals in Eq.
dx;'s. The whole set of equatior(83) can be recast into the (33), it should grow slower than linearly at infinity.
more compact equation It is worth recalling that Eq(34) was found as the result
of an accurate dynamical procedure: We first calculated cor-
X X relation functions of the scalar gradient for all points being
(xzaf—)\z[x(O)—X(E)HZ(E,)\) =0, (34  separated, the resulting gradients correlation functions were
then integrated to obtain structure functions, and finally the
generating function for scalar differences was reconstructed
for the generating functio®(x,\) = (exp(~i\56,)) of scalar  from its moments. We thus avoided handling diffusion ex-
differencesd, taken at the scalg. From this very defini- plicitly, paying for this the price of taking many particles
tion it follows that the functionZ must tend to unity for into consideration. The closed differential equati@d) for
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the scalar difference generating function emerges as the really, the absence of an anomaly is associated with the van-
sult of this procedure. On the other hand, one could generallishing direct flux ofé? in the limit of infinite Pelet numbers.
[also for the nonsmooth case, i.¢+# 0 in Eq.(3)] derive the  This point, already appearing in Sec. I, will emerge even
following unclosed Fokker-Planck equation for the generatmore clearly in the full analysis of the dissipation field in
ing function: Sec. VI. In Secs. V A and V B solutions of E(5) atx>L
andx<sL will be discussed.
{X* 33— N[ x(0) = x(XIL) [} Z(x/L,\)
= k([ #36:~ B0,1exN (0~ 0,)]). (39 ~ AUpscaleintenal |
Let us first consider scales larger than the integral dcale
This equation is simply obtained by averaging the equatiomhe asymptotic solution for the generating function, which
of motion (1) for the scalar at two reference points. The can also be found from E¢35) by replacingy(0)— x(x/L)
smooth (y=0) limit of Eq. (35) differs from Eq.(34) by the by x(0), is
right-hand-side dissipative term. There is a general expecta-
tion that this term may remain finite even in the limit- 0, X
thus providing a nonvanishing anomaly in the terminology of Z= ([
Polyakov[18]. Equation(34), derived microscopically with-
out any conjecture, shows then the absence of an anomalhe inverse Fourier transform of E(86), calculated in the
for the one-dimensional smooth flowWe acknowledge saddle-point mannethe large parameter /L or, equiva-

1/2—V1+4x[0]\%/2
(36)

Polyakov for directing our attention to this majtePhysi- lently, large values of56,|), gives
|
1 exp{ —y?/(4x[0]In[x/L])}, |y|<In[x/L]
PO(y)= ————=X (37
2\mx[0]In[x/L] [ exp{—|yl/(2Vx[0D}, ly[>In[x/L].

Thus the arguments for Gaussian statistics presentéfl]in The tail of the PDF matching the Lorentziai38) at

for the incompressible case indeed can be reversed and ajy{~1 is exponential. To see this and generally to obtain an
plied here for the upper interval. Structure functions of or-explicit analytic solution for the PDF in the whole domain of
ders much less than[iL] indeed scale logarithmically, the x and 86,, let us consider the specific form of pumping
core of the scalar difference PDF is Gaussian, and the PDF’s

tail is exponential.

)= @9
X<\ T1= T 0102
B. Downscale interval L 1+(xL)
We shall now obtain a general formula for the PDF at
y<1, no matter hovwy andx/L relate to each other, provided Making in Eq.(34) the change of variable det]=x/L, the
both of them are small. Indeed, replacing thelependent solution of the resulting equation can be expressed in terms
potential by the first term of the expansion owdL and of associated Legendre functions as
solving the resulting differential equation with the same
boundary conditions as before one gets the simple exponen-

tial form for the generating function Z(x/L,\) Z, . (cofo];N\)
=exp(—AVx"[0]/2x/L). The inverse Fourier transform pro- . o
duces the following Lorentzian expression for the PDF: _2 Y2+ DI (v+1)/2]Py;~ Y(cod ¢])
1L 1 Var sin ¢] ,
86y) I
73( (Y) T X y2+ |)(”[0]|X2/(2L2) ' (38) (40)

which is thus generally valid dty|<1. It results from Eq. where the upper indexy=—1/2+ (1/2)y1+4\%. The

(38) that the PDF is smooth in a small region around thechoice of the sign for the square root is such as to ensure that
origin y=0, where it can actually be expandedyifL?/x?>.  the generating functiod(x,\) grows at infinity slower than
This region extends approximately upxf_, where the sec- linearly. The notationZ, in Eq. (40) is intended to stress
ond behavior in ? sets in. Note that the concavity of the that this explicit solution was obtained for the pumpii3§).

PDF in this second region is upward and remain upward ufNote that Eq.(40) is particularly applicable for the upper

to the small value/L. It is just for very small values interval discussed in Sec. V A. Considering E40) at p<<1
|y|<x/L that the concavity is reversed downward. An ex-and\>1, one indeed recovers E(B6). Using the integral
perimental histogram of such a PDF would then lookrepresentatiori8.714 in [23] and the doubling formula for
strongly cusped at the origin. theTI function, Eq.(40) can be presented in the integral form
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2T[(v+3)/2] The left branch goes fror1i1o<_a—0+ to i/2—0%, bypasses
Z.(cofplsN)= - A =i/2 from below, and the right branch goes frarg+0"*

Jm sin ]l [(v+2)/2] toic+0". The final result is

¢ cogt]—cog ¢]\”
xf cos{t](.—) dt. .

0 sin ¢] (56,) 1 f q dqg F{ |yl >

P,y == exg — = V(1+q°)
(41) * A 0 \/1+q 2

The integral representatiofdl) is useful since it clearly xg(cole];q), (42)

shows the analytic structure &, with respect ton. One

observes in particular theg, is analytic in the whole upper where the function-ig is the difference betweefi, on the
semiplane, except on the line of imaginaryrom i/2 toice. right and the left of the cut, i.ey— —1/2+iq/2, respec-
The path on the real axis in the inverse Fourier transform catively. The general expression fgrcan be derived from the
be then deformed into the following one surrounding the cutintegral representatiofl) as

5+iq)
. 0 cogt]dt 4 ( sin ¢] )iq/z
G(cof ¢];q) J sine] Jo Jcogt]-cos o] - 3+iq) |\ cogt]—cog ¢] (43
4

The calculation of the PDF of scalar differences in the convective interval is now reduced to the evaluation of the
asymptotic behavior of in Eq. (43) and then to perform the integréd2). In the convective intervak/L =cof ¢]<1, i.e., the
anglee is very close tor/2. The dominant expression gfin this region can be obtained by simply expanding directly in Eqg.
(43). Inserting this expansion into E¢42), we obtain

lyl

1

1x
_qV1+¢? sinl{a-rq/Z]exp{— > Vi+o?|dq 7Ly 1>y[>x/L
P ):§EJ T[(3+iq)/4]|* cosR[=q/2 ) x “9
0 [PL(3+iq)/4]|" cost ma/2] ~Zexi{—|yl/2l, lyl>1,

where, aty>1, the prefactor algebraic in has not been considered. Varying the pumping funciéx/L), one can change
the number behindly| in the exponential, but the exponential behavior itself will never change.

One may check that the PDF’s asymptotic for the smallest vdlglesx/L derived from Eqs(40) and(41) is consistent
with the general formul#38). Indeed, the respective largeasymptote ofG is

(45

&}_z)
co§t]—cog ]| 4)°

a4 (e co§tl (g
Gleoleli =2V ife] Jo cos{t]—cos{cp]sm(zln

Substituting Eq(45) into Eq. (42) and performing first the integral ig and then the one ih, we obtain afy|<x/L<1

¢ cogt]dt

1
(500) |
) V2w Jo \Jcogt]—cod ¢] n

—3/2

in2 1 } —)7TX
n cogt]—cog ¢]

1 15 y? 1L ( Lzyz)
cogt]—cose]|| = 8 1==z| (49

Expressiong44) and(46) are clearly in agreement with Eq.
(38), valid for an arbitrary form of pumping.

Let us now derive the scaling behavior of scalar structure (|61— 65|~ A
functions(| 8, — 6,|?) at x<L. The scaling for ordera>1 (_) for —l<a<1
is dominated by the behavior of the PDF at values of order |
unity. On the contrary, fom<1, the region in %2 domi-
nates. The resulting scaling behavior of structure functions i§or a<—1 the moments do not exist at all since the PDF is

for a=1

| x

(47)
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finite at the origin. We remark that E§47) is exactly the B (T t
same scaling as for velocity structure functions in the Bur- QITHeo(V}]~ 5 j dt EXF{ZJ 0>(t')dt'}
gers equation. In the present model the collapse of high- fo fo
order exponents is associated with the uniformity in space of t
stretchings and compressions. eXF{ZJt 0>(t')dt'}
0

XG| a P& , (50

VI. PDF OF SCALAR DISSIPATION AND GRADIENTS ]
o ~ wherea and g8 are defined as
The nth-order moment of the dissipation field

= X)) ined from th ical - t t '
gior;]c((nggtéx)) can be obtained from the dynamical expres aEeX{ZJOOU(S)dS foodt, eXF{_ZLt o(t”)dt"},
(€"y=2n=DN k(9% E[T{o (O X=X Dy ) BEGXI{Zfoo(t’)dt’}_ 51
0
=2n-1)I{(Q[T;{a()}]M), - (48)

In order to obtain Eq(50) from the original expressio#9),
) o _ we have made the following two step®[ty;{o(t)}] has
The average with respect to the noigess easily performed  peen neglected and the upper botira the integral ovedt’
in Fourier space, thus obtaining for a has been replaced ty. Both steps are motivated by
the time scales separation at largeleenumbers. More pre-
1 (7 W2(t) [t cise conditions of validity of the approximation will be dis-
QE%2 j dt Wz(t)G[ pe j dt’WZ(t’)}, cussed later in the section. The momefffs') can now be
0 0 obtained by taking thath power of Eq.(50) and averaging.
The average ovet(t) is decomposed in a small times part
1 (= DU<EHt<t0dU(t) and a large times partDo-
G(XZ)EE f dg Pxq expl—g°x?), (49 =Tl do(t). The corresponding weights are simply ob-
N tained decomposing the integral ovérin Eqg. (21) as
_ ] ) ) _ S<=(1/4)fg)[<r<+1]2 and inS- the integration runs from
where W(t) is defined in Eq.(24) and xq is the Fourier ¢ 4T The great advantage of E€O) is that, in the long-
transform of the pumping correlation functir{x). Let us  time averaging, bothw and 8 are just external parameters,
recall that the Pelet number is defined as the pumping-to- depending neither on timenor ono- . Once the average
diffusive scale ratio PeL/\2« and is supposed to be large. gyer o~ is performed, we are then left with a function @f
To obtain the stationary valug"), the limit T—o should gpng B. This is in turn averaged over_, giving the final
be considered. result(Q").

The average over with the Gaussian weigh®1) has to A compact way for averaging over long-time statistics is
be calculated in Eq48). This is very hard to do explicitly in {5 introduce the Laplace transform of the PDF
the general case. We can, however, exploit the presence ¢>E<exq—sQ]>>. It is indeed easy to recognize that its

the large parameter Pe to develop an asymptotic theory th%t;th integral coincides with a matrix element in quantum
captures the dominant terms in E¢8) with respect to Pe. mechanics with Hamiltonian A= _ 22
The important point is that, when Pe is large, there are two+ NG PEPE  Th . ?)I
very different time scales in the dynamics. For the Lagrang- sﬁtexp(r 7) ,[a ex_p(277) ] ' € space varable
ian trajectories relevant to E¢48), particles start very close n=J,o(t")dt’. Using standard quantum-mechanical nota-
to each other. The additive molecular noise term in thetion, the expression foPg can be presented as

Langevin equation for Lagrangian trajectories is dominant at _

these distances and remains dominant as long as the particles ~ Ps =(exd —sQl)~

do not separate by a distance comparable to the dissipative _ (T—tg)Fig| am 7l2

scale. This phase of the dynamics corresponds to the forma- =exl —(T—to)/4l(&(n)|e oole™ %)

tion of the integral in the square brackets in E49 and _ra—(T-t)/4 g

takes place on times of order unitpot scaling with Pe e P(T=toi )]0, 52
Once the particles have reached the dissipative scale aRghere d(t; ) satisfies §,—H)®=0. The initial condition
enter into the convective region, random multiplicative ef-att—0 for the wave functionb(t; ) is exp(#7/2). Noting
fects due to the velocity become dominant. Due to the Mulyhat the potential part of the Hamiltonian vanishes at
tiplicative nature of the dynamics, the time to go from the n— — and ®(0;7) does not, we obtain the asymptotic
dissipative scale to the integral scale varies as In Pe. Thigehavior ofd at long times

phase is associated with the growth of iW8 terms in Eq.

(49). For large Pelet numbers, the two processes, formation Do(y)
of the integral in the square brackets and growtMBfterms d(t, p=In[yPg]) U4 ,
in Eq. (49), are well separated in time. Let us then consider a t—ee VPey

time ty satisfying 1<ty<<In[ Pg]. At the dominant order in ) )
the number Peet, Q can be approximated as [dy—sBG(ay?)]Po(y)=0. (53
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The new variabley=exp(y)/Pe has been introduced. The an expression similar to E431). The nth momente” aver-
function ®4(y) should tend to unity foy—0 andq)ol\/y aged overo-. coincides withc,(1/Pe) up to simple combi-
should vanish foy—o. It follows from Eq.(52) thatP, is  nhatorial factors. The final result is

simply the functiond calculated ay=1/Pe.

The general way to attack E¢3) for an arbitrary form B\~ 124 \/E
of pumping is to proceed as we have already done for Eq. (eM~=(2n—1)! n!(—) TD , (54
(30) in Sec. IV. Starting with a constant unit solution, the @ e
term withs in Eq. (53) is treated perturbatively. A seriessn
is then obtained®, =1+ = _,c,(y)s", with thec,’s having  where the coefficienta,, are given by
|
an= | dy,Gly2] | dys [ dyaGly [ d T dypnGly2
n Y2G[Yy3] Y3 YaGly4] Yon-1 Y2nGLY2nl- (55
0 0 Y3 0 Yan-1

Equation(54), together with Eq(61) allowing the calcula- It is again convenient for averaging to introduce the Laplace
tion of small times averages, gives the expression of all intransform of the PDFP; =(exp(—su))- . As in Eq.(52), its
teger moments of the dissipation field for a general form ofexpression can be presented as the quantum-mechanical ma-
pumping. It follows from Eq.(54) that all these moments trix element

scale with the same power of Pe. This shows that the strong

intermittence evidenced in the analysis of scalar differences = o ~

in the convective range comes down into the dissipative s =fo e P [ uldu=e "% 5(n)|exd —toH][e”?)
range. The analysis of the dependence of the constants in

Eq. (54) actually shows that the intermittence of the dissipa- =[e "W (ty;7)],-0- (59

tion field is even stronger than for scalar differences. To this

aim, it is convenient to restrict the analysis to a particularyere y(t; ) satisfies §,—H)¥ =0, the Hamiltonian is
form.of pumping, allowing us to prpcefd \2NIth explicit cal- H(7:s)= —(937+s exp(—27), the space variabley= 1o,
culations. Specifically, let us consid&™[x°]=exf —2x]. and the initial condition for the wave functiow(t;») is

The correlation function of the corresponding pumping has : . .
exp(n/2). The asymptotic behavior at large timegan be
the Fourier transformyj =4/w/q* exp(-1/q%). Equation P(r/2) ymp g ~

: . S MRt : obtained as in Eq(53), noting that the potential part iH
E)Sf?h\gltBhesngﬁ\Srr:gti?n? Zpsemﬁc fornG* is solved in terms decreases at infinity ardr(0;%) does not. It follows that
0

W (t; ) —— W o(n)=e" exd n/2— s exp(— )],
oo Lol VsBlae™ P9 L VsB 11(\spla) i

- _
* lo(VsBl ) Pe-1 Pe Io(VsBla)
(56)  where Wo(7) satisfies H+1/4)¥,=0 and behaves as
exp(n/2) for large %'s. Requiring expip/4)>1, we can plug
The advantage with respect to the general case with arbitrar'\72‘<e asymptotic expressiofb9) into Eq. (58) and obtain
form of pumping is clearly thaP is now known explicitly ~ *s :exr[—_\/g]. The PDF ofu and the moments relevant for
and this will permit us to reconstruct the PDF of the dissipa-€" are easily restored as

(59

tion field.

Having averaged over-, we need now to take into N (L f0++i°c _ Bosu
account fluctuations at small times, i.e., average aver P(n) 27 Jot—iw dspse 27 Jot—iw dse e
An important point is that, both in the general c454) and
in Eq. (56), we need to average quantities of the form _ 1 _ i (60)
\/,Ef(a/,B), with f arbitrary but having the property that it _2\/;M3/2ex 4u)’
depends only om/ 3. For our purposes, it is then appropri-
ate to introduce the random variable= o/ 8 and consider g1 "
its distribution function weighted with/B: <(_) \/§> :J du u "TY2P<(L)

o < 0
a (n—=1)!
fDU<eXK—S<)5(M— E({U<})) VB{o}) =22“*1T. (61)
P u]= - "
J Do<exp(—S.) This expression can be used to calculate the moments ap-

(570  pearing in Eq.(54). Note that expressiofb4), derived ex-
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ploiting the time scale separation, coincides for the first mo- It is indeed time to clarify the limits of validity of the
ment () with the dominant order of the known solution calculations performed. To be concrete, we shall specifically

derived in Sec. Il consider the pumpin@* leading to Eq(56). The remainder
of the expansion over Pé in Eq. (56) is bounded by

<6>:i = [x(0) —x(x)Jdx 62) Bl11(VsBla)\sal B+sl;(\sBla)]/2P€&. Contrary to Eq.

mPe Jo x*+Pe? (61), we now need to consider averages ©0f «/ 8 with

weight 8. The problem can again be reduced to the calcula-

One step further can be made for the specific form oftion of a quantum-mechanical matrix element and it is found
pumping G*[x*]=exy —2x], allowing us to obtain the ex- that the final result depends ogas exp(&). The condition

plicit solution (56). From Eq. (56) we obtain indeed the for the remainder to be subdominant with respect to the
Laplace transform of the PDF f@ (averaged over both—  terms kept in Eq(56) is therefore that exp{g/Pe should

ando-) as vanish as Per. On the other hand, the observation time
must be much larger than unity in order to attain the station-

P=(P7) 18 f‘”d _ hL(slw) ary state, i.e.t,>1. This condition is clearly compatible

s=\ s /<2 e ), T (w) lo(\/ST ) with the previous one, in the limit of large  &et numbers,

and gives the ordering <4tg<<In[P€]. The other delicate
1 o - point is the criterion of applicability of Eq63) with respect
=1—ﬁ JO In[14(2yxs)Je *dx. (63 tos. For the expansion in Eq56) to be meaningful, the
e second term should be much smaller than unity. This shows
The moments(e") can be immediately reconstructed, ac- that we should require<P€. The expansioit56) fails then

cording to Eq.(48), from the derivatives of Eq63) ats=0 to describe the largetails of P; and thus the smallest values
They read R ' " of €in the respective PDRhe relation between largeand

small € is direct since the decay of the generating function is
relatively slow.

(2n—=1)!tn! 9" 1 X o :
Another simple approximation is, however, available for

eN=——"——In|——
e JmPe 92" | 3o(V2) -0 the highs limit. The trajectories contributing téexp(—sQ))
oo at largess> P¢ are clearly those wher® is small. From the
i I'(n+1/2)[T(n+1)]°2 f In[Jo(\/2)]dz definition (49) it follows that, for this to happenW?(t)
27°Pe c "t should remain small all the time. The quantity? ‘W2 is

in this caseD(1) and the argument i@ is small on account
(64) of the 1/Pé factor. For the trajectories relevant at highit is

where C is a close contour abow=0 in the complexz  thus possible to approximat® by G[0]/PE€[W?. The

plane. The Cauchy integral representatiéd) is useful for ~ Laplace transfornPs reduces then to

getting the largey asymptote of Eq(64). The integral is

indeed saddled around the square of the first zero of the

Bessel functiorzg=x2, Jo(Xo) =0. The saddle estimation for 7’55<exp{ _sG0] detWZ(t) >
the integral is of the order of], thus giving Pe Jo
IN[Pee")] —— n(3IM[n]—3+I[2x,]). (65 =e T 8(n)|exp{— TH(— 7;3G[0)/P)} e~ "),

n—oo (67)
The whole expressio(63) can actually be inverted. From
Eq. (49) it follows indeed that the PDFP{9)(¢) of the dissi-

pation e is given by where 7(t)= [y (t) andH is the same as for E¢58). The

matrix element(67) actually coincides identically with Eqg.

1 1 = e X [o*tin (58 when ty is replaced byT, n» by —#, and s by
Pl(e)= —— — f dx—57 f ds P, exdse/(2x)]  SG[0]/P€. Using Eq.(60), one can then easily get the final
2w 2@ Jo X 0t —jw

answer
1 Fd | 1 1 oF,(1/2,1/2,z%/8)
= —_— Zin
Pe Jo lo(2)||v2 \VsG 0
0 ™ \/; Ps—exg — P([E ] , s> Pé. (68)
z
—\/—;0F2(1,3/2;622/8) : (66)

Inverting Eq.(68), we can obtain the PDF aof at the small
where 4F, is the generalized hypergeometric function with valuese< Pe 2. (Falkovich has informed us that the expres-
the q parameters in the numerator and ihgarameters in sion for the PDF’s origin can be derived through the adia-
the denominator. Thé function at the origin arising from batic conjecture suggested receritB4].) For larger values
the unit term in Eq(56) has not been considered in EG6). of ¢ the PDF follows from the general formul&6). The
The reason is that, as we shall see in a moment, the range fafllowing general behavior for the dissipation field PDF is
validity of Eq. (66) is e>Pe 2. thus obtained:
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¢

viPe 1 (1 2P¢ ) for e<Pe?

e — R — e

7JG[0] ye |~ GIOI°

G[0] 1 1 _

€)
P(e)— — P for Pe2<e<1 (69)
— (€l 1/
G[0] W, €~1 for e>1,

\

where algebraic prefactors have not been considered in region of exponential falloff. The PDF for scalar gradig¢ats
follows immediately from Eq(69) as

(L L2
P 2 for w<1/L
G[0] 1
7?“(a))—>{ %—2 for l/L<w<1/\/; (70
GLO] 5.exil — (|o| VTeq)?] for w11k,
\

Moments of the dissipatioe®), with a>1/2, are all pro- (and generally turbuleptproblems where the effects dis-
portional to 1/Pe, in agreement with E&4) valid for arbi-  cussed here could be of relevance. Thus we recall and briefly
trary pumping. Moreover, we learn from E¢69) that the comment on the major properties of the model discussed in
linear scaling found for scalar differences low-order mo-the paper and address, in parallel, the respective questions
ments comes down to the dissipative range. Moméals  for future studies.
with —1/2<a<1/2 scale indeed as P&. Moments with The first major property of the dynamics ilse inverse
a<—1/2 do not exist. From Eq70) it also follows that the cascade of the scalaiThe inverse cascade is a consequence
same tendency observed for scalar differences PDF to d&f compressibility, but in a subtle way: [25] we considered
velop a cusped structure at the origin is present. An imporindeed a generalized smoothdimensional model having
tant difference arises for the tails. The comparison betweethe degree of compressibility as a free parameter. A transi-
Egs.(70) and(44) for gradients and scalar differences indi- tion between inverse and direct cascades is observed there: If
cate indeed that the former decrease much more slowly. Sugh>4, the cascade is always direct, independently of the de-
behavior is physically understood in terms of fluctuations ofgree of compressibility; if the latter is small enough, the
the dissipative scale as follows. Gradients can be thought afascade is direct again; otherwise, it is inverse. It might also
as scalar differences evaluated at the dissipative scale. Thig interesting to look from the same dynamical point of view
scale is, however, a dynamical quantity and fluctuatesised here at the critical dimension appearing in the passive
(strongly in a problem with inverse transfer like the onevector problem discussed j26] and at the role of compress-
herg. The statistics of these fluctuations are actually relategbility for the direction of energy transfer in other turbulent
precisely to those of the variabje introduced in Eq(57).  situations, e.g., 2D Navier-Stokes and turbulence in magne-
The fluctuations ofe" are therefore the product of those of tohydrodynamics.
scalar differenceandthose of the dissipative scale. The lat-  Dynamically, the inverse cascade is associated with the
ter do not depend on the dimensional parameters of the prolact that the Lyapunov exponent for Lagrangian trajectories
lem, i.e., they are universal as follows from H&§O), but is negative. This implies thaif) the case of inverse cascade,
grow factorially with the ordemn. This factorial growth is  contraction of Lagrangian trajectories is typical and stretch-
precisely what shifts the dominant term in E@5) from ing is a relatively rare evenfThis is precisely the opposite of
2n Innto 3n Inn. It follows then that the slower decay of the canonical picture associated with the direct cascade. Rare
the tails for gradients with respect to those for scalar differtrajectories(contracting or stretching if the Lyapunov expo-
ences is indeed due to dynamical fluctuations of the dissipanent is positive or negative, respectivesre responsible for
tive scale. the intermittent part of the problem. This definitely confirms
the picture that contractive trajectories play a crucial role in
the intermittence in incompressible turbulent transport.

A negative Lyapunov exponent leads to the third obser-

We analyzed in the present paper statistics of the passiweation emerging from the analytical study of the modéie
scalar advected by a one-dimensional, smooth, and fas€saussian statistics of the scalar is established at scales
correlated-in-time velocity field. In spite of its extreme sim- larger than the scale of the pumping, while strong intermit-
plicity, the dynamics presents very interesting and surprisingence is present at small scaleShe small-scale intermit-
behaviors. We expect that many of them are quite generitence found here is of the Burgers type, i.e., all scalar differ-
and it may be interesting to look for more realistic scalarence integer moments scale lineatly /L. This result gives

VII. CONCLUSIONS AND DISCUSSION
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a definite ground to speculate that, generally, the stronger thgart of this work was done. This research project was partly
degree of compressibilitithe role of contracting trajectories supported by the R. H. Dicke Fellowship Foundation and
is then enhancedthe more intermittence downscaling of the ONR/DARPA URI Grant No. N00014-92-J-17981.C.), the
pumping is observed. Note with respect to the Gaussian n&ussian Fund of Fundamental Researches under Grant No.
ture that the inverse cascade of energy in 2D Navier-Stoke87-02-18483(1.K.), and the GdR Meanique des Fluides
turbulence is also Gaussian according to the numg2ifs It ~ Geophysiques et Astrophysiquésl.V.).
raises yet another conjecture of a certain generality of the
Gaussian feature for a great variety of direct cascades. APPENDIX A: DYNAMICAL FORMULATION
The equation for the scalar difference PDF, derived di- BY EIELD EORMALISM
rectly from the dynamics in Sec. V, shows timat dissipative ) ) ] o
anomaly is presentn the model. In the general one- Let us consider the gradient field(t,x) satisfying the
dimensional model introduced ifi4], y=1 is a natural €duation of motion(4) with the velocity u(t,x) having
threshold for the inverse cascade. At-1 the cascade js Gaussian  statistics ~ and  correlation  function
direct, while it is inverse ay<1. Most probably this means (U(t.x)u(t’,x’))=V(t—t’,x—x"). The generating func-
that there is no dissipative anomalihe equation for the t|o_nal f(h) for its smultaneogs cor.relatlon functions can be
PDF of the scalar difference could be closéat y<1. How-  Written in the form of a functional integrabee[33,34))
ever, it is not yet clear how to derive this consistenidsy it is 1 1
derived he_re for the smooth I|m1)t=_ 0)_. Note that the gen- j:()\):f Dp Do Du eXp{f (plx"|p)— 5 (ulV1|u)
eral question of the role of the dissipative anomaly in the
passive scalar physics is not yet resolved in any s&mae -
suggestions on this point may be found[#$19,2§). One +if dt dx oo+ dy(Uw) — kd2w]
more unresolved question is how the dissipative anortialy 0
any) affects the anomalous scaling behavior of structure
functions of integefand generally aJlorders. +J dx )\(X)w(T,X)]. (A1)
An important result for the issue of convection-diffusion
interplay is thathe effective dissipative scalhich sets the 4 ) .
crossover scale between the scalar differencth noment  Here |V~ u) denotes the diagonal matrix element of the
in the convective range and the dissipation field moment, ~ INVerse operator t&/(t—t’,x—x") in tb? Hilbert space of
is a strongly fluctuating quantifygrowing factorially withn.  the functionsu(t,x) and the pumping" is the second spa-
To make this statement, we have analytically calculated irfial derivative of the forcing correlation functiog, defined
Sec. VI the dissipation field PDF exploiting a different scale-IN EQ: (2)- The retarded regularization of the time derivative,
separation procedure, which is also used in Appendix B td%@)n=(1/A)(w,— ,_1) does not produce any nontrivial
describe the long-time dynamics of the pair-correlation funcJacobian after derivation of E¢A1) from the equation of
tion of the scalar gradients. The procedure is likely to be gnotion.A—0 is the temporal slicing and,(x) = w(nA,x).
general tool for resolving the problem in other situations.Performing the Gaussian integration over the fiald,x),
Particularly, a slight(matrix) modification of the method We arrive at
should be relevant for the Kraichnahdimensional incom- 1 1
pressible smooth model. = f _Z + = "
Finally, the eddy-diffusivity operator is Hermitian for the Fr) bp Da exw’ 2 (0dxp|V]wdp) 2 (PIX"IP)
Kraichnan model, where the random velocity is incompress-

ible and fast.The Hermitian nature is lost when compress- +i det dx p(atw_Kaszf dX N(X) o (T,X) .
ible flow is consideredGenerally, it might be interesting to 0 X
look at scalar transpofand particularly at flow with finite (A2)

correlation timeg from the point of view of non-Hermitian

nature. This issue is the subject of very recent interest in thgor the case ofs-correlated-in-time velocity fields consid-
field of disordered systenf29-32. The specific object of ered in this paper, we replace the gen&tdi—t’,x—x’) by
interest for scalar transport is the resolvedt;x,y), de-  specifics(t—t')V(x—x’). The explicit version of Eq(Al)
scribing the probability to find a Lagrangian separation equajhen reads

to x at timet, having initially been equal tg. One may then

want to study the distribution in the complex plane of the

poles of its Laplace transform. A width of the poles’ domain f()‘):f D pDaw ex;{ _S+f dx )‘(X)‘”(T'X))'

along the imaginary direction might be a characteristic of the (A3)
trapping degree.

1 T
S:EJ dt[f dx dX (wdyp)(t,X)V(X—X")(wdp)(t,x")
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Despite the explicit presence of theterm in Eq.(A4), the {p(t,x),w(t,x)}
dynamical part of the actio® is covariant with respect to

Galilean transformations. This leads to the important Ward _){ D
identity

.
t,x+ift dq-f dyyzayp(t,y)w(t,y)>,

O]

;
f Dp Dw exp{—8+f dx M(X)w(T,X) t,erift de dy yzﬁyp(t,)’)w(t,)/)), (Al1)

_ _ _ which can be considered as the field-dependent and time-
Xl;[ (fdx (4 X) 0P (Y, 'X)) 0. (AS5) dependent homogeneous spatial translation leaving the
source term intact. Analytic continuation of the fields, which

where the seft;<T,j=1,2,..} is arbitrary. To prove it, let makes the spatial arguments real, is assumed. The action

us consider the change of variables (A9) gets the following form being rewritten in the new vari-
ables:
T 1 T 2
P(tX)=p| x+ | v(r)dnt], szzf dt 2dex(waxp)(t,x)
0
T / " X_X’ !
o(t,X) > x+j U(T)dr,t) (AB) —f dx dxX'p(t,x)x"| —— | p(t,x")
t
in the functional integral(A3) with v(7) being uncon- —'JO dt dx p(dw— kdiw). (A12)

strained. The transformation does not change the source term
and |t haS a Unit JaCObian. The Variatiéﬁ Of the aCtionS The transformatiomAll) has a nontrivial Jacobian
under the transformation reads

DpDw—DpDowJ(p,w) (A13)

T
58=—if dtv(t)(jde(t,x)axp(t,x) . (A7) that depends on regularization. The regularization is fixed by
0 the requirement for the temporalfunction from the corre-
lation function of velocities to appear as a result of narrow-
The change of variables does not change the value of thag of an even function of temporal argument. In addition,
integral. Thus all the functional derivatives of H&3) over  the correctly regularized actioff12) should reproduce the

v(t) are equal to zero. Taking into account EA7), one  respective correlation function in the linilit—0:
finally arrives at the Ward identityA5).

All expressions written above are applicable for any
short-correlated velocity field. Now let us narrow the consid- Pn(X)—Pn
eration to the case of smooth velocity figl@) with y=0.
One gets

i
x+ EAJ dy Y29yPn(y) wn(y)

N
+iAm=§n:+l J dy Yaypm(Y)om(y) | (A14)

(A8)

]—'()\)zf Dp Dw ex;{ —S+f dX A(X)w(T,X)

1 (T
SZEJOdt

X
x(t,x’)—f dx d)(p(t,x)X”(T) p(t,x")

for w,(x). The Jacobiar/(p,w) can be computed easily

J(p,w)zex;{ —if dt dx Xwaxp). (A15)
_J dx dx’(w&xp)(tax)(x_X,)Z((’-’(?x’p)

The exponential of the terrf%dt(fdx Xwdyp)? in the action
(A12) multiplied by the JacobiafA15) can be represented
(A9) by means of averaging the exponential of
ifgdtafdx X wdyp over the auxiliary fieldo(t). The
Gaussian measure of averaging owds defined in Eq(21).

It results in the following representation for the generating
functional 7(\):

.
—if dt dx p(dyw— kdZw), (A10)
0

where theV, term was dropped due to EGAS). The goal is ]-‘()\)zf Dp Do Df Do exp{ -S,— ; (flx )

to reduce the problem to averaging of a functional of one

random-in-time scalar field, analogously to the random ma- T

trix description used in the two-dimensiorjal,35] and gen- Xex;{if dt dx [ dyw— 0 dy(Xw) = kFzw— dyf]
erally d-dimensional cases. However, in the present case, 0

compressibility calls for further evaluation. Let us perform

the following change of variables in EGA8): +f dX A(X)@(T,X)|. (A16)
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Integration ovep(t,x) gives the reduced equation of motion ) Fi+xF,, x<x’
in the reference frame comoving with a fluid particle g(x,x")= D,+xD,, X>X'. (B6)
o= od(Xw) — kdgw=d,f, (A17)  Here, the constants,,F,,D,,D, should be fixed via inner

matching atx=x" and outer matchings dt, andxg. The

averaged with respect t(t,x) and o(t) with the weights  \a1ye ofx,, restricted byk<xo< /s, defines the upper

given by the first line ofA16). It should be stressed that this pound for the scales at which one cannot omit the first term

equivalence holds only at the level of simultaneous correlagy Eq. (B4) anymore. However, the point is thabat x,<x’

tion functions. an actual dependence gf on x, has disappeared and we
should not locate, explicitly to get the asymptotic behavior

APPENDIX B: LONG-TIME BEHAVIOR of g(x,x"). Indeed, integrating EqB4), we get
OF THE PAIR-CORRELATION FUNCTION
OF GRADIENTS x g(z2)dz
Hg(x)=s S0 T2k (B7)
In the present appendix we will find the long-time 0 S(X)+2x

asymptotic of the pair-correlation function of the scalar gra- L . L :
dients Q(t,x) that obeys Eq(5). We will model here the where the argument’ is omitted and it is already taken into

infrared cut-off of the velocity correlations by account thatg(x) is even: 9,g(x)|x-o=0. Equation(B7)
shows that thex derivative changes sufficiently at the diffu-

S(x)=x2, x<L,, S(x)=L2, x>L,. (B sive scale, being nonetheless small there. This means that the
function g(x) at x<xq is a constant in the leadin@ero

The Laplace transform of E@5) has the form order ins. The subleadingfirst order ins) term is then fixed
by Eqg. (B7) taken atx=x,. All together this gives the fol-
sQ— 3 S(X)+2x]Qs+ x"(X)/s=0. (B2)  lowing expression fog atx<x’ with the desirabldfor the

forthcoming matchingaccuracy:
The solution of Eq.(B2) can be written in terms of the

Green’s functionGy(x,x") [which is taken to be even ir, _ 1+SXfXO dz | 145 ™
G(x, —x')=Gs(x,X")] as 9=% o So+2x) 9o\ TS )
1 e (B8)
QS(X):_EL Gs(x,x") X" (x")dx’, where, evaluating the integral in E¢B8), we used that
\/;<x0. Matching Eqs(B5) and(B6) and Eq.(B8), we get
_ 92 — v/
$s = L S(X) +2x]Gs= S(x=X"). (B3) Dy+x'Dy=F1+x'Fy, Fp—Dp=1 atx=x,
The desired long-time asymptotic corresponds to the smallest 55
s and our aim is to find the singular structure Of(x) at D,;+L,D,=A, D,=— _SA at x=L,,
smalls andx> \/«. In what follows we will then neglect all Ly

logarithmic contributions such asInL, ands Inx. We will
also neglect the smallest’ (x’< k) contribution in the
integral (B3) going to zero in the limit of small diffusivity.

a
F1+XoF2=0o, I:2:5902—rd at x=Xo. (B9
Therefore Gy(x,x’) should be studied afk<x’<L, and in

all the allowed domains with respect xo Keepings very small, while the ratios/\/x and /s/L, are
Making the substitutiorGs(x,x")=g(x,x")/[ S(x) +2«], finite, one derives from EqB9)
one gets
E 1+x's/L, SQym
s 1=0%0= ) 2= '
T g—d%a=8(x—x' s/ (2rg)++/s/L 242
S(x)+2:<g 959=8(x—x"). (B4) l(2rg)+sIL, V2K
The solution of Eq.(B4) in the domain of the largest D.— A 2V2k+x'sm __ E’A (B10)
. 1 ’ 2 .
x,x>L,>x'>k, can thus be written as sm+2v2ks/L, Ly
’ s It is worth noting that the explicit value of; does not enter
9(x,x") =Aexp — —(X= Lo (B5  Eq.(B10) and the scale separation procedure is indeed justi-
! fied. Substituting Eq(B10) into Eq.(B6) (x' <L), one gets
Note, however, that only the first two terms of the expansion
(B5) in s will be required for matching hereafter. ¥ is QX = 1 x(x)  x(0) B 2\2k
smaller thanL, but still larger than a separation scalg, s S(X)+2k | s s+ays| 7Ly’
one can omit the first term on the right-hand side of @B4) (B11)

and write the general solution of E@®4) in the intermediate
domain, atL>x> \k, and the inverse Laplace transform



2.2
Q(t,x)= i pt)}

pc+1
(B12)

2 0
X(X)—X(O);L dp

1
S(X)+2k

Expression (B12) states that, at the times less than
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sistationary limit given by Eq(7). At the largest times,
Q(t,x) approaches the asymptotic value

1

WX(X)

(B13)

7]_U~Lﬁ/K, the correlation function coincides with the qua- diffusively, y(x) — Q[ S(x) +2k]= C— x(0) (a?wt) 2,
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